o
Us

>
-

S HYTINNVHSHY
¥ TECHNOLOGY

ny. 1995
%*8 c\@\ce
Ty OF ©

Ahsanullah University of Science and Technology
Department of Electrical and Electronic Engineering

LABORATORY MANUAL
FOR
ELECTRICAL AND ELECTRONIC SESSIONAL COURSES

Student Name :
Student ID :

Course No. : EEE 4232
Course Title : VLSI Il Lab.

For the students of
Department of Electrical and Electronic Engineering
4% Year, 2"4 Semester

EEE 4232 VLS| Il Laboratory

Table of Contents

Lab-0: Overview of VLSI-Il LADOFatoryccuiii ettt ettt et e e sttt e e s stae e e s sata e e e ssaareeeennsaeeessnnreeanan 1
Lab-1: Introduction to Verilog HDL Programmingcceccuieeeiiiiieeeeiiieeeeiireeeesseeeessnseeeessnsseesssnsseesssssesanas 6
Lab-2: Introduction to Functional Verification Using Verilog Testbench......c.ccccocoiiiiiiiiiniiiei e, 32
Lab-3: Modeling Sequential Systems and Finite State Machine Using Verilog HDL...........cccccceeeviuvnvineen.n. 49
Lab-4: Introduction tO UNiX SRl ..ot et s 61
Lab-5: Synthesis using Genus SYNthesis SOIULIONcccuiiiiiiiii e e et 69
Lab-6: Physical Design Using Encounter Digital Implementation System (Part 1)ccceeceeevieecieeccieeennee. 77
Lab-7A: Physical Design Using Encounter Digital Implementation System (Part 2)ccccceevveeeciveennnenn. 100
Lab-7B: Static Timing Analysis Using Encounter Digital Implementation Systemcccccceeeeeieeeennnen. 114
Lab-8: Physical Verification and Power Analysis Using Encounter Digital Implementation System 124

References and ACKNOWIEAZMENTcooiiiiiiiiie e s e e e e ree e s e ae e e e eareeas 133

Lab-0: Overview of VLSI-Il Laboratory
Objective
The main objectives of this lab are:

e Familiarization with Application Specific Integrated Circuits (ASIC) design flow.
e Overview of the VLSI-II lab.

Introduction

To design very large-scale integrated circuits some frontend and backend processes needed to
be acomplished. The processes can be represented as a flow chart to show the life cycle of a chip
which is called Application Specific Integrated Circuits (ASIC) design flow. A typical ASIC design
flow is shown below.

System Specification

v

Architectural Design

=

Design Import & Timing Mode Setup

Design Implementation

Floorplanning

¥

Creating Power Mesh

v

| Cell Placement and PreCTS optimization ‘

<

Functional Verification

Logic Synthesis

~

o
.
.
K
.
.
o

<=

Automatic Place v
| Clock Tree Synthesis and PostCTS opt ‘

Physical Design
Y v =L, and Route

| Verification & Signoff | Routing and Post Routing Optimization

v

Fabrication

¥ Metal and Standard Cell Fill
Packaging & Testing
¥ Physical Verification

Chip

Figure: ASIC design flow

Page 1 0of 133

System Specification
Design functionality, performance factors (speed, power, latency, throughput, dimension,
data size), cost, I/O requirements etc are clearly stated at this stage.

Architectural Design

Determines required different architecture blocks to implement the design to maximize the
performance factors. It also determines the algorithm for optimized connection of the
blocks and formal verification is performed.

Design Implementation

The system can be designed in two ways: analog design and digital design. In the analog
design process, circuit blocks are designed at the transistor level. On the other hand, the
synthesizable RTL description of the device is programmed using Hardware Description
Language (HDL) in the digital design process. HDL Programming can be easily implemented
for any modern complex device as it gives the advantage of simulating and verifying the
design output and functionality efficiently.

Functional Verification and Testing

Functional simulation is performed in this stage, and the logic of the system is verified using
timing simulation and test vectors. If the functionality doesn’t match the Function should
be designed again

Logic Synthesis

The process of translating the RTL into a gate-level netlist is called Synthesis. In this process,
the design is optimized, and technology mapping or library binding is done. The gate-level
netlist must undergo formal verification to prove that RTL and netlist are equivalent.

Physical Design

Physical Design is the process of transforming a circuit description into a physical layout that
describes the position of cells and routes for the interconnections between them. The
physical design consists of the following steps.

= Design Import & Timing Mode Setup

* Floorplanning

= Creating Power Mesh

= Cell Placement and PreCTS optimization
= Clock Tree Synthesis and PostCTS opt

= Routing and Post-Routing Optimization
= Metal and Standard Cell Fill

Page 2 of 133

Verification and Signoff

Verification would either be just before the tapeout stage of the chip or the stage where
design is again taken back through the same flow for optimization. The following
verifications are usually performed in this stage.

= Design Rule Check (DRC): It checks design rules such as shapes/size/spacing and
many other complex rules of each metal layer.

» Layout vs Schematic (LVS): It checks whether the design layout is equivalent to its
schematic.

= Antenna Rule Check (ARC): Checks for a large area of metals that might affect the
manufacturing process.

= Electrical Rule Check (ERC): The methodology used to check the robustness of a
design both at schematic and layout levels against various electronic design rules.

After all verifications, post-processing is applied where the physical layout data is translated
into an industry-standard format called GDSII. The GDSII file is sent to the semiconductor
foundry to convert it into mask data which is called tapeout. GDS Il is a database file format
that is the industry standard for data exchange of integrated circuit or IC layout artwork. It
is a binary file format representing planar geometric shapes, text labels, and other
information about the layout in hierarchical form. It is also referred as Graphic Design
System.

Fabrication
The mask of physical design is sent to factories called fabs(clean room). Several masks are
used in turn, each one reproducing a layer of the completed design Masks are used to create
a specific pattern of each material in a sequential manner and create a complex pattern of
several layers Introduction
For fabricating an IC in the clean room following steps are performed.

= Wafer Preparation

= Oxidation

= Lithography (Photoresist & Masking)

= Etching

= Dopant Incorporation (Diffusion & lon Implantation)

= Crystal Epitaxial Growth

= Deposition

= |[solation

= (Cleaning

Packaging & Testing
After fabricating the chip in a clean room, it should pass some specific tests before
commercial use. If all test is confirmed it is packaged and sent to the consumer.

Chip

The final output of the process is a chip.

Page 3 of 133

EDA Files
Liberty Timing File (.lib file)

ASCII representation of the timing and power parameters associated with any cell in particular
semiconductor technology. Types of lib file Fast lib, Slow lib, and Typical lib. Basic differences
among those libraries are Nominal voltage Nominal temperature cell leakage Power Capacitance,
Fall power, Rise power, and Timing.

Library Exchange Format (.lef file)

LEF is a specification file for representing the physical layout of an ICin an ASCIl format. It contains
library information for a class of designs. It mainly contains Layer information, Via information,
Placement site type and origin, and Macrocell definitions.

SDC (Standard Design Constraint)

The Standard Design Constraint format is used to specify the design intent, including the timing,
power and area constraints for a design.

Cap table

Cap table contains information of parasitic Resistance and Capacitance which is used to model
the interconnect of a design.

Cdb (Celtic Database)

For signal integrity analysis besides lib files, the tool required the .cdb files also. The main issues
of concern for signal integrity are Ringing, Crosstalk, Ground bounce, Distortion, Signal loss,
Power supply noise.

Commonly used EDA Tools

Function Tools
Analog Design Cadence Virtuoso, HSPice, LTSpice
Cell Layout Design Cadence Virtuoso Layout Suit
RTL Coding Cadence NCSim, ModelSim, Quartus
Synthesis Cadence Genus, Yosys Open Synthesis Suite
Physical System Design and STA Cadence Encounter, Innovus
Verification Cadence Assura, Mentor graphic Calibre

Page 4 of 133

Probable List of Lab Tasks

The following processes of VLSI ASIC design flow will be covered in the upcoming classes.

Front End Process

= Verilog HDL programming language.

= Functional Verification using Verilog Testbench.

= Modeling Sequential Systems and FSM using Verilog.

= Synthesis

Backend Process

= Physical Design
= Static Timing Analysis

= Physical Verification and Power Analysis

Assessment Procedure and Marks Distribution (Tentative)

Assessment Type Percentage
i) Continuous Performance 10
ii) Lab Test-1 20
iii) Lab Test-2 25
iv) Assignment 15
v) Project 30
Total 100

Page 5 of 133

Lab-1: Introduction to Verilog HDL Programming

Objective
The main objectives of this lab are:

e Basic terminology of Verilog HDL programming.
e Familiarization with different levels of Abstraction in Verilog HDL.
e Simulating Verilog HDL using ModelSim.

Introduction

A system or chip can be designed in two ways: analog design and digital design. In the analog
design process, circuit blocks are designed at the transistor level. Nowadays high performing
chips are designed with more smarter functions and that has increased the density of the
transistor in a chip. In VLSI (Very Large-Scale Integration) technology chips are designed with
more than 100,000 transistors. So it is not easy to design and verify such a complex system in an
analog process. In the digital design process, according to the functionality of a chip, a
synthesizable RTL description of the system is modeled using the Hardware Description Language
(HDL). HDL gives the advantage of simulating and verifying the design output and functionality
easily before they were fabricated on chips. For a long time, programming languages such as
FORTRAN, Pascal, and C were used to describe sequential computer programs after that
Hardware Description Languages (HDLs) came into existence to model the concurrency processes
found in hardware elements. Some common HDLs are Verilog, System Verilog, VHDL, VerilogA.

Verilog Module

Modules are the building blocks of the Verilog design. Modules can be embedded within other
modules, and a higher level module can communicate with its lower-level modules using their
input and output ports. A module should be enclosed within a module and endmodule keywords.
The following figure shows the structure of any Verilog module.

module module_name [(port_name{, port_name })];
[parameter declarations]
[input declarations]
[output declarations]
[imout declarations]
[wire or tri declarations]
[reg or integer declarations]
[function or task declarations]
[assign continuous assignments|
[initial block]
[always blocks]
[gate instantiations]
[module instantiations|
endmodule

Page 6 of 133

Port Types

Port provides the interface by which a module can communicate with the internal and external
environment. Based on the direction of the signal Verilog language allows three types of ports.
Ports can be declared as follows.

Type of Port Verilog Keyword
Input port input
Output port output
Bidirectional port inout

Data Types
Verilog language has two primary data types called Nets and Registers.

1. Nets
e Represents structural connections between components.
e Declared as ‘wire’.
e By default, one bit.
e All port declaration are implicitly declared as wire in Verilog
2. Registers
e Represents the variables used to store data.
e Declared as ‘reg’.
e Stores/holds the last assigned value until it is changed.
e Must use register data type if a signal is assigned in procedural

In Verilog, “parameter” is used to declare constants and does not belong to any other data type such as register
or net data types. A constant expression refers to a constant number or previously defined parameter. We cannot
modify parameter values at runtime, but we can modify a parameter value using the “defparam” statement. In
modern RTL design, “localparam” is used to declare constants.

Port Connection Rule
Verilog simulator shows violations if port connection rules are violated.

DUT Block

I wire

inoutI wire

reg or wire | jnput Design Block Output wire

DUT Block wire wire orreg| DUT Block

Page 7 of 133

. Input
e Internal input ports must always be net (wire) type.
e External input ports can be connected to reg or net type.

. Output
e Internal output ports can be either reg or net type.
e External outputs must be net type.

. Inouts

e Internally and externally inout ports must be net type.
e They are bidirectional.eg-power, ground, etc.

. Width Matching
It is legal to connect internal and external items of different sizes when inter-module port
connections. However, a warning is typically issued that the width does not match.

. Unconnected Ports

Verilog allows ports to remain unconnected. For example, a full adder module has three
inputs (A, B, C) and two outputs (sum, carry). So, if we don’t want to use any of the inputs
or outputs during the submodule call, we simply ignore that by keeping the place blank.
Example if a module is full_add(A, B, C, SUM, Carry) during the submodule call if we want
to ignore the C input can write as full_add al(x,y, ,z,I)

Literals

Literals are used for representing constant numbers. The syntax for a constant is shown below.

<size>’ <sign><base> <number>

N T S

* The number of binary
bits the number is
comprised of.

*Default is 32 bit

*Indicates if the number is
signed.

*Either sor S.

*Not case sensitive.
*Default is unsigned

*Radix of the number.
*Binary: b or B
*Qctal:00or O
*Hexadecimal: h or H
*Decimal: d or D
*Not case sensitive.
*Default is decimal.

Number
according to
base.

Page 8 of 133

Example 01

The following example demonstrates the Verilog syntax for different literals and data types.

reg [7:0]i;
reg[7:0]j;
a=549;

b=4'bx;

c=8'hfx;
d=‘h8FF;
e=5'd3;
f=8'b00001011;
g=8’b0000_1011;
h=8'b1011;
i=4’sb1011;
j=-4'sb1011;

O o NOUNWNR

N Rk kR
W N RO

parameter a,b,c,d,e,f,g,h; // declaration of multiple variables of parameter type

// reg type variable declaration which can store up to 8-bit

// reg type variable declaration which can store up to 8-bit

// decimal number 549, no size specified

//4-bit unknow value xxxx

// 8-bit number equivalent to 8b1111_xxx

// hex number, no size specified

// 5-bit decimal number 00011

//8-bit binary number 00001011

// “_”is a separator used to improve the readability of 8-bit number 00001011
//8-bit binary number 00001011

// 4-bit positive signed number 00001011

//initializes with 1011 then for negative signh 2s complement is performed which
is 0101 then 4 zeros are padded for signed value 00000101

Example 01 is not a complete Verilog Module it just demonstrates the syntax

Verilog Operators

To represent the functionality of a digital system different operators such as logical, bitwise, etc.
operators must be used. In the following table, different Verilog operators are shown.

Table demonstrating different operators

{} concatenation ~ bit-wise NOT

.- arithmetic & bit-wise AND

o modulus | bit-wise OR

> >= < <= relational : bit-wise XOR

| logical NOT A~ ~t bit-wise XNOR

& logical AND & reductfon AND

I logical OR | reductfon OR
~& reduction NAND

== logical equality » reduction NOR

1= logical inequality A reduction XOR

=== case equality ~A A~ reduction XNOR

b= case inequality << shift left

ot conditional >> shift right

Page 9 of 133

Example 02

The following example demonstrates the basic logical syntax of basic logical operation used in
digital system representation. We can represent the logical expressions in two ways called Gate
Instantiations and Continuous Assignment.

O oONOTULANWNR

N R R RRR
N WN RO

module gates(A,B, Yn,Ya,Yo,Yx, Zn,Za,Z0,Zx);
// Gate Instantiations
output Yn,Ya,Yo,Yx;

input A, B;

not g1(Yn,A);

and g2(Ya,A,B);

or g3(Yo,A,B);

xor g4(Yx,A,B);

// Continuous Assignment
output Zn,Za,Zo,Zx;

assign Zn="A;

assign Za=A&B;

assign Zo=A|B;

assign Zx=A"B;
endmodule

Verilog Modeling Styles

Digital systems are generally modeled in four ways called Switch-level modeling, Gate level or
structural modeling, Data flow modeling (DFM), and Behavioral modeling.

N.B: RTL is a combination of Data Flow and Behavior Modeling styles. The logic synthesis tool
can generate a gate-level netlist from RTL.

1. Switch level Modeling

This method provides mechanisms for modeling MOS transistors using Verilog. This
modeling style is used in very specific cases, for designing leaf cells in a hierarchical design.
Switch-level modeling is not detailed enough to catch many of the problems.

Page 10 of 133

Example 03

The following example demonstrates the Verilog HDL code of an CMOS inverter using the switch
level abstraction.

vdd

4

—

gnd

CMQOS Inverter

module inv_cmos(in,Y);
input in;

outputy;

supplyl vdd;

supplyO gnd;

pmos pl(Y,vdd,in);
nmos n1(Y,gnd,in);
endmodule

CON O U AN WN R

2. Gate level or structural modeling

In this method, a system is designed using predefined gates or user-defined
primitives. It is white box modeling because every design is visible inside the design.
It is the lower level of abstraction.

Page 11 of 133

Example 04

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the gate level abstraction.

1

O oOoNULANWN

R R R R RR
N WN RO

/*

Steps for Gate Level Modeling

I. Develop the Boolean function of output
Il.Draw the logic diagram.

Ill.Connect the gates with nets(wires).
*/

module mux_2tol(s,lo,I1,Y);

input s,lo,11;

output;

wire wl,w2,w3;

not (wl,s);

and (w2,lo,w1);

and (w3,s,11);

or (Y,w2,w3);

endmodule

3. Data flow modeling (DFM)

In this method, a system is designed by specifying the data flow between input and
output. It uses continuous assignment statements to drive a value on a net or wire. It
is a higher level of abstraction than the gate level. It may be either black-box modeling
or white-box modeling depending on the design complexity.

Example 05

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the data flow modeling.

1

Lo NOULANWN

N R R RR
N WNRKRO

/*

Steps for Data Flow Modeling

1.0Obtain the relation between output and input.
Il.Impalement the logical relation using “assign” statement.
¥/

module mux_2toi1(s,lo,I11,Y);

input s,lo,11;

outputy;

wire wl,w2,w3;

assign wl="s;

assign w2=lo & wl;

assign w3=s & 11;

assign Y=w2 | w3;

endmodule

Page 12 of 133

4. Behavioral modeling

In this method, a system is designed and implemented in terms of a design algorithm
based on the behavior of the design and its performance. Verilog behavioral code
must be inside procedural statements/blocks only. It is the highest level of
abstraction. It is also known as black-box modeling.

Procedural Block

There are two types of procedural blocks in Verilog called “Initial” and “always” blocks.
Procedural blocks are evaluated in the order in which they appear in the code that’s why it is also
known as sequential statements. Procedural statements assign values to reg, integer, real or time
variables. Procedural blocks cannot assign values to nets.

a) “initial” Block
e Statements inside the initial block are executed only once.
e Executes at time zero.
e Used in Test bench

b) “always” Block
e Sensitivity list or list of signals that directly affect the output result must be
defined in always block.
e Whenever the value of a signal in the sensitivity list changes then the statements
inside the always block is executed.

always @ (sensitivity_list)
begin
[procedural assignment statement]
[if-else statement]
[case statement]
[while, repeat and for loops]
[task and function calls]

end

Example 06

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the behavioral modeling style. The always procedural block is used here to set the output
of multiplexer(y) whenever any of the inputs (lo and 11) or selection input (s) changes.

11 /*
2 | Steps for Behavioral Modeling
3 | I.Develop a behavioral algorithm (like ‘C’ programming).

Page 13 of 133

0O N UL A

11
12
13
14
15
16
17

Il. According to the algorithm insert the behavioral statements inside the appropriate procedural
block

¥/

module mux_2tol(s,lo,I1,Y);

input s,lo,11;

outputreg;

always@ (s,lo,11) //if we use always @* The * operator will automatically identify all sensitive variables.
begin

if(s==0)
Y=lo;
else
Y=11;
end
endmodule

Hierarchical Modeling

A Hierarchical methodology is used to design simple components to construct more complex
components There are two design approaches when writing code in a hierarchical style called
Top-Down and Bottom-Up methodology.Typically, designers use these two approaches side-by-
side to construct complex circuits.

1. Top-Down Methodology
In a top-down design methodology, we define the top-level block and identify the sub-
blocks necessary to build the top-level block. We further subdivide the sub-blocks until
we come to leaf cells, which are the cells that cannot further be divided.

Top-level block

Sub-block 1 Sub-block 2 Sub-block 3 Sub-block 4

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf Leaf
cell cell

Figure: Block representation of Top-Down methodology

Page 14 of 133

2. Bottom-Up Methodology
In a bottom-up design methodology, we first identify the building blocks that are available
to us. We build bigger cells, using these building blocks. These cells are then used for
higher-level blocks until we build the top-level block in the design.

Top-level block

AARN

Figure: Block representation of Bottom-Up methodology

Example 07

The following example demonstrates the Verilog HDL code of a full adder following the
Hierarchical Modeling style. In the design, the half adder is constructed from the predefined logic
gates and then the half adder instance is used twice to design the full adder. This creates two
instances in the same module.

module Full_Adder(A,B,Cin,sum,carry); // Top module
input A,B,Cin;

output sum,carry;

wire s1,c1,c2;

Half_Adder sm1(s1,c1,A,B);

Half_Adder sm2(sum,c2,s1,Cin);

or ol(carry,cl,c2);

endmodule

CONOY UL KN WNR

10 | module Half_Adder(s,c,x,y); // macro cell

11 | input x,y;

12 | output s,c;

13 | xorsi(s,x,y); // predefined primitive or leaf cells
14 | and cl(c,x,y);

15 | endmodule

N.B. One module can be instantiated to another module without maintaining the 1/0 sequence
using the Namely Wise Instantiation method (.currentmodule_variable(submodule_variable)).

Page 15 of 133

Blocking and Non-Blocking Assignment

Blocking (=) and non-blocking (<=) assignments are provided to control the execution order
within an always block. All the previous examples of combinational circuits used blocking
assignments. But if the subsequent assignments depend on the results of preceding assignments
non-blocking assignments needed to be used. The following examples demonstrates the use of
blocking and non blocking assignments.

Example 08

In the following example, we have tried to design a shift register module named shift_reg using
the blocking assignment.

module shift_reg(clock,W,Q);

input clock,W;

output reg[3:0]Q;

always@(posedge clock)

begin
Q[3]=w;
Q[2]=Q[3];
Q[1]=Q[2];
Q[o]=Q[1];

end

endmodule

R O OO NIULANWNR

N =

Now let us try to realize the output of Example 07 for that let us consider Initially Q=0000 and
W=1. Now for the first two positive edges of the clock, the output will be following.

Output
//After the first positive edge of the clock
Q[3]=w=1;
Q[2]=Q[3]=1;
Q[1]=Q[2]=1;
Q[0]=Q[1]=1;
//After the second positive edge of the clock
Q[3]=W=1;
Q[2]=Q[3]=1;
Q[1]=Q[2]=1;
Q[0]=Q[1]=1;

Now from the output, we can notice that the output is always the same. For a shift registrar, we
know that the output will propagate bit-wise sensing each clock trigger but in the design of
Example 08 that is absent due to the use of blocking assignment as the variable update is
executed in the order they are coded. It should be noted that the blocking assignment blocks the

Page 16 of 133

execution of the next statement till the current statement is executed. So, it can be said that
blocking assignment is useful for combinational circuits.

Example 09

In the following example, we have modified the shift_reg module of Example 08 by replacing
the blocking assignment with “non-blocking”.

module shift_reg(clock,W,Q);
input clock,W;
output reg[3:0]Q;
always@(posedge clock)
begin
Q[3]<=w;
Q[2]<=Q[3];
Q[1]<=Q[2];
Q[0]<=Q[1];

O oONOOULAN WNR

=~
(=)

end
endmodule

=~
~

Now let us try to realize the output of Example 08 for that let us consider Initially Q=0000 and
W=1. Now for the first two positive edges of the clock, the output will be following.

Output
//After the first positive edge of the clock
Q[3]=wW=1
Q[2]=Q[3]=0
Q[1]=Q[2]=0
Q[0]=Q[1]=0
//After the second positive edge of the clock
Q[3]=w=0
Q[2]=Q[3]=1
Q[1]=Q[2]=0
Q[0]=Q[1]=0

Now from the output, we can notice that the output is propagating bit-wise by sensing each clock
trigger after using the blocking assignment as the variable update process is executed in parallel.
In this code execution of the next statement is not blocked due to the execution of the current
statement. This method is useful for modeling sequential circuits and generating concurrent
statements.

There are three types of assignments in Verilog, continuous (assign), blocking (=), and non
blocking (<=).

Page 17 of 133

Example 10

The following example demonstrates the Verilog HDL code of a D Latch

module D_FF(clock,D,Q);
input clock,D;
output reg Q;
always@(*)
if(clock)
Q<=D;
endmodule

N L N WNR

Example 11

The following example demonstrates the Verilog HDL code of a D flip-flop. A D flip-flop is a 1-bit
data storage device that saves one-bit data depending on its input D and clock pulse. When a
clock edge is triggered, whatever input is present in D goes to the output Q.

module D_FF(clock,D,Q);

input clock,D;

output reg Q;

always@(posedge clock)
Q<=D;

endmodule

AU AN WNR

Example 12

The following example demonstrates the Verilog HDL code of a 4 to 2 priority encoder with a
valid bit. In the example, the casex statement is used. In Verilog, there are three types of
variations in case. The case, casex and casez all do bit-wise comparisons between the
selecting case expression and individual case item statements. In the case statement, the values
x or z in an alternative are checked for an exact match with the same values in the controlling
expression. On the other hand, casexignores any bit position containing an ‘x’ or ‘Z’. The
casez statement only ignores bit positions with a ‘z’.

module p_encoder_4to2(D,Y,V);
input [3:0]D; //declaring variable for input
output reg [1:0]Y; //declaring variable for output
output reg V; //declaring the variable for valid bit
always@ *
begin
casex(D)
4'b0001:
begin

O oo NOOULULANWNR

=~
(=)

Y=2'b00; V=1;

Page 18 of 133

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

end
4'b001x:
begin
Y=2'b01; V=1;
end
4'b01xx:
begin
Y=2'b10; V=1;
end
4'b1xxx:
begin
Y=2'b11; V=1,
end
default:
begin
Y=2'bx; V=0;
end
endcase
end
endmodule

Page 19 of 133

Simulating Verilog HDL

1.

4.

Find the following icon on your PC and double-click on the icon to run the software.
(Search: ModelSim - Intel FPGA Starter Edition Model Technology ModelSim - Intel FPGA
Edition vsim 2020.1 (Quartus Prime 20.1))

M

™ ModelSim - INTEL FRGA STARTER EDITION 2020.1 - [m] x

The following window will pop up.

File Edit View Compile Simulste Add Library Tools Layout Bookmarks Window Help

CR-g =] i@ | O-MEN|SDEBH| ¢ I Lavout [iioDesign -
3 NI RS “ | 30 - @ g & || SRR AR B
i worary i + o x| | g Wave - Defoult R
¥iMame [tme [patn | | e e
o i) work Lbrary C:/Users/Adnan/Desks ji =
s+l 220model Library $MODEL_TECH/. . falter 2 =
ol 220model_ver Library SMODEL_TECH/.. /alter j23)
s 4l siters v tes
r y
a
r
a
-
o
-
o
-
: bﬂon = _I
| 2] i [T O] |
X|Find: 3| | searchror = (@ Wi
= & [Find: |8, (i
+ X
20.1/modelsim_ase/win32aloem/../modelsim.ini J

Onsto 1us <No Design Loaded > <No Context>

Execute File > New = Project. The Create Project window will appear.

ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1
File Edit View Compile Simulate Add Library Tools Lz

I New | Folder M E
Open... L
Load > Project... < B by
Close Library... =
Import Lg Debug Archive.. =—i|-'
Export
Save trl+5

Repaol

Change Directory...

In the Create Project window change the Project Location to your directory (e.g.
D:/150205022/Lab-1/Full_Adder) and give a name in the Project Name field. After that
click on the OK button.

[Project name must be same as the top module]

Page 20 of 133

M Create Project X

Project Name
Full_Added

Project Location
D:/150205022/Lab-1/Full_Adder Browse...

Default Library Name
work
—Copy Settings From
modelsim ase/modelsim.ini Browse...

%' Copy Library Mappings (" Reference Library Mappings

OK Cancel |

5. The Add items to the Project window will appear. Select the Crete New File button.

M Add items to the Project >
Click on the icon to add items of that type:

) R

Create New File Add Existing File

M 3

Create Simulation Create New Folder

Close

6. In the Create Project File window fill up the File Name field which must be identical to
the project name and top module name. Also, select Verilog from the Add file as type
dropdown menu. And ten click OK button.

M Create Project File >
File Name
Full Addex] Browse...
—Add fleastype———————— [Folder
[Verilog -l [Top Level -l

o ICancel|

Page 21 of 133

7. The Add items to the Project window will appear again. Click on the Close button.

M Add items to the Project pid
Click on the icon to add items of that type:

0]

Create New File Add Existing File
™M £3
Create Simulation Create New Folder

I Close

8. Now the ModelSim window will look like the following figure.

ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1 - O s
File Edit View Compile Simulate Add Project Tools Layout Bookmarks Window Help

J B-= & $.5. % Layout |NoDesign j ‘

J ColumnLayout |A11Columns

|- a-g@a-3|

j - L PUEEY vl g @ ‘ ® R R R
Iy

{¥¥)5022/L.ab-1/Full_Adder/Full_Adder ::: +| & x|| | gm| Wave - Default + & x|

|Name [Sudrpe Jorseh ___l

l Fu"Adderv ? VEHIDOD 1 .I- |
-

Zme
T Cursor 1

Kl o] |

L] |] :
[l tbrary 44 project sl || XIFind: & o 4 SearchFor v | [{a) W *
R Transaript s # d x|
Loading project aa =]
+ reading C:/intelFPGA_lite/20.l/modelsim_ ase/win32aloem/../modelsim.ini

Loading project Full_Adder

ModelSim > =

Ons to 497 ns Project : Full_Adder |<No Design Loaded> p Context>

Page 22 of 133

9. Now to open the editor window execute File = Open...

M ModelSim - INTEL FPGA STARTER EDI
m Edit View Compile Simulate

New » T -
C]:Hl... T
Load 3

Close Project

Import »

ﬁ' Open File
» . 150205022 Lab-1 Full_Adder

Organize MNew folder

e [Name Date modified Type
B vork 04-Now-22 1:37 AM File folder

MR This PC
= . Full_Adder.v 04-Nowv-22 1:46 AM Text Documen

#" 3D Objects

M Desktop

B Documents
Downloads
Music

B3 Pictures

= Videos

= Local Disk (C:)

== New Volume (D:

File name: | Full_Adder.v AN HDL Files (*v;* vl *.vhd:* vhdl* ~

N

11. In the editor window write the Verilog module of your design. And save using the shortcut
executing Ctrl+S every time.

| D:/150205022)Lb-1Ful_Adder Full_Adder.v - Default * i 4+) X|
Ln# J

| module Full Adder(sum, carry, a, b, c);
2 input &,b,c;

3 QUCpUL Sum, CAarry;

4 agsign sum=a‘b*c;

5 assiogn carry= (asb) | (bec) | (csa):
€ sndmoduls

Page 23 of 133

12. Now click on the Compile All icon for compiling the design.
[alternatively, execute Compile - Compile All]

13. After successful compilation you will get the following message will appear in the
Transcript window.

[Transaript ————

4 X

¢ reading C:/intelFPGR 1ite/20.1/modelsim ase/wind2aloen/../modelsim. ind
Loading project Full Adder
Compile of Full Adder.v was successful.

ModelSim>

14. Now to simulate the design click on the Simulate icon.

[alternatively, execute Simulate=> Start Simulation..]

%

O-AT M| x0x B A

15. The Start Simulation window will appear. From the Design tab, execute work = <click
on your project module name> and click on the OK button.

M Start Simulation x
Design I VHDL] Verilog] Libraries] SDF] Others] <3
TlName ‘-"Tvpe IPth ‘ ‘ﬂ
=4l work Library D:/150205022/Lab-1/Ful_Adder jwork

L 7 Full_Adder Module D:/150205022/Lab-1/Ful_Adder/Ful _...
Vi Library SMODEL_TECH/. . fvital2000

verilog Library SMODEL_TECH/. . fverilog
! Library SMODEL_TECH/.. [alteraverilog/twent...
twentynm_hssi_ver Library SMODEL_TECH/.. [alteraverilog/twent...

s

twentynm_hssi Library SMODEL_TECH)/. . faltera fvhdl/twentyn...
-4k} twentynm_hip_ver Library $MODEL_TECH].. falterafverilog/twent...
++fli} twentynm_hip Library $MODEL_TECH].. falterafvhdlftwentyn...
+lil twentynm Library $MODEL_TECH].. falterafvhdlftwentynm j
=] 2
Design Unit(s) Resolution
work.Full Adder default Wi

Page 24 of 133

L |

16. The following message will appear in the transcript if everything is done correctly.

ModelSim> vsim -gui work.Full Adder
vsim -gui work.Full Adder
Start time: 04:03:27 on Nov 04,2022
Loading work.Full_Adder

17. The input and output variables defined in the Verilog will appear in the Objects window.

$a objects EE L | £|

18. Now go to the Wave window and select all the input and output variables of the Objects
window and by right-clicking on your mouse execute Add Wave to place them in the
Wave window.

g Wave - Default

Regi.
Regi.
x Regi.

View Dedaration

View Memory Contents

ave
Add Wave To
Add Dataflow Ctrl+D

Add to »

UPF »

Copy Ctrl+C
Find... Ctrl+F

Page 25 of 133

19. All the input and output variables will be placed on the wave window and the wave
window will look like the following.

1@ Wave - Defauit it + & x|

S [

9 [Ful_Adder/a i Al

X|Find: ﬁﬂ'
mm|Wave | | Ful_Adder.v | KE|

Y | searchFor v | [{a} V¥ *

20. Now apply clock to each input variable. Right-clicking any input variable and from the
popped-up menu execute Modify = Clock.

g Wave - Default
I

:, .IFI_III -_ai .- .- —
P Object Dedaration

Add
— Edit

= Wiew

|_ I] =
Radix
Format

Last w

Combine Signals. ..

0.00 ns

Page 26 of 133

21. The Define Clock window will appear. Set parameters as per your requirement keep in
mind all the units are in picoseconds by default.

M Define Clock o

Clodk Mame
lpim: /Full_zdder/a
—offset——| | Duty
o |50

—Period—— —Cancel

[100 |

Logic Values
High:ll Low:lD
FirstEdge —
i~ Rising ™ Falling

Ok Cancel

22. After defining all the input clocks, to evaluate the outputs write run 100 ps on the
Transcript of ModelSim. Then the simulation will be performed for 100 ps.

§ 1 Transcript
force -freeze sim:/Full Addersfa 1 0, 0 {S0 ps} -r 100
force -freeze sim:/Full_ Adder/b 1 0, 0 {25 ps} -r 50
force -freeze sim:/Full_Adder/c 1 0, 0 {12 ps} -r 25
VSIM 24> run 100 ps

VSIM 25>

WSIM 25>

MNow: 100 ps Delta: 1 sim: Full_Adder

Alternatively, we can run the wave output using the Run icon by typing the Run length

S e 7 ST

[Give run length according to your requirement.]

Page 27 of 133

23. The wave window will look like the following figure after simulation.

el x]

JWEVE Default
(=R E =R

B0 /MEF| B EIE T mpjm.m@@ JJ\mHv'sf ot

j-s 4-248-3

Cursor 1 154ps

If you need to change the clock pulse you must reset all the clocks before changing clocks
otherwise the inputs and outputs will change after the previous run time which is not a
convenient way to represent the inputs and outputs. The command
transcript for resetting all the clock. Alternatively, restart can be performed by executing

Simulate - Restart

“restart” is used in the

Showing Binary values on the Wave

Sometimes it is hard to verify the functionality of a digital system from the wave. For easy
functional verification, we can read the binary values from the wave of ModelSim by doing the

following steps.

I. Select all the input and output variables on the clock and right-click on the mouse
and execute Radix = Binary.

- J 3‘_ . SymEDlic
I w Binary
Octal
Decmal
M Wavwve - Default Unsigned
DI T tiexadecmal
9 (Full_Adderja Mo Data- ASCII
9 (Full_adder/b Mo Data- Time
29 /Full_Adder jc o Data- Sfixed
4 /Full_Adder fsum Mo Data- Ufixed
4

® (Full_Adder fcari

Object Dedaration
Add
Edit
WView

LIPE

Radix

Use Global Setting
Show Base

Mumeric Enums
Symbolic Enums

1 float32
2 floats4

|Find: ﬁﬂ_

Format

Cast to

1

Page 28 of 133

II. After changing the Radix, change the Format type similarly by selecting all input
and output variables on the wave by right-clicking on the mouse and then
executing Format - Literal.

Cast to 3 Logic
o Event
Combine Signals. ..
Group... Analog (automatic)
Ungroup Analog (custom)...
[ll. Now on the wave, binary values will be displayed which can be easily analyzed.
g8 Wave - Default g + & x|

100ps :.::........ VU D D i e:.. EIE
Cursor 1 179 ps

L] oK 2 [

[| [KW

Changing Clock Unit

In step 21 it is mentioned that ModelSim’s default timing unit is picosecond. But in some cases,
we may need to define clocks in other units. Let us consider, that we need to define the period
of a, b, and c as 10ms, 5ms, and 2.5ms respectively. Now define the clock a, b, and c as shown in
the below figures.

M Define Clock ¥ | A Define Clock % M Define Clock *
Clock Name Clock Name Clock Name
sim:/Full Rdder/a sim:/Full Adder/b 3im:/Full Adder/c
offset Duty offset Duty offset Duty
u] 50 1] 50 a 50
Period Cancel Period Cancel Period Cancel
= | =1, |
Logic Values Logic Values Logic Values
High: |1 Low: |0 High: |1 Low: |0 High: [1 Low: |0
First Edge First Edge First Edge
" Rising * Falling " Rising © Falling ¢ Rising " Falling
Ok Cancel oK Cancel CK Cancel

Page 29 of 133

To view output for all the input combinations the run length should be equal to the maximum

period.

& 4 4m F |

10 ns 4] EUEE L X &

As all the units are in milliseconds, for easy visualization we can change the time units of the wave
grid by executing Wave - Wave Preferences - Grid & Timeline - Time units - ms.

O at

Layout

Wawve Edibor

Refresh Display
Assertion Debug
Assoc Array Wiew
Zoom

Expanded Timea

Mouse Mode

Cursors

Delete Window Pane {q)
Remove a'-\ll

Signal Seardch. ..

Virtual Builder . .
Filter 'L‘Uaueforrn - {h)

Bookmarks

I Wawe Prefa’ms =

™M

Display Grid & Timeline HE

Iv Grid Configuration
Grid Offset Minimum Grid Spacing

0 ps 40 (pixels)

Grid Period

v Auto Period

Reset to Default

1 ps

Timeline Configuration
{* Display simulation time in timeline area

" Dizplav grid period count (cyde count)

™ uUse commas in ime values

[T Show frequency in cursor delta

Cursor Control

¥ Left Mouse dick in wave area moves the dosest cursor to the mouse location

I Ok ICanceI| Apply

Now the ModelSim wave window will look like the following figure.

ﬂ Wave - Default

Similarly, for femtoseconds, nanoseconds, and microseconds, we can use fs, ns, and ms

respectively

Page 30 of 133

Post Lab Tasks

Test the functionality of each example (4-13) using the ModelSim wave.

Design three input NOR gate using the switch level abstraction.

Design a 4-bit Carry Look Ahead adder using the concept of hierarchical modeling.
Design a BCD adder using the behavioural modeling technique.

PwnNPRE

Page 31 of 133

Lab-2: Introduction to Functional Verification
Using Verilog Testbench.

Objective
The main objectives of this lab are:

e Familiarization with test bench module.
e Learning different techniques for generating test vectors
e Verifying combinational circuits imposing test vectors.

Introduction

The test bench is an automated way of verifying and validating a digital design. A test bench is a
procedural block that executes only once. Particularly the “initial” procedural block is used for
the test bench. Only for repeated clock generation, the “always” procedural block is used. Test
bench generates clock, reset, and the required test vectors for a given design under test (DUT)
and hence by monitoring the output functionality of the design is verified. During synthesizing a
design, a test bench is not required it is required during simulation only.

—> —>
Stimulus »| Design Under Test ' Monitor
(DUT)
= ’

Block of Design Under Test

Rules of Testbench

I. Define timescale using the command “ “timescale <unit>/<precision> “.
II. Instantiate the top module in the test bench module.
[ll. Declare the input and output of design as “reg” and “wire” type respectively in the test
bench module.
IV. Specify the test vectors for different delays using the command “#<time_delaye>".
V. Use “Sdisplay()” or “Smonitor()” commands to show outputs for the given test vectors
in the transcript.

VI. The “initial” procedural block must be declared at least once.
VIl. Terminate testbench using the command “$finish”.
VIIl. Monitor the outputs for functional verification using the transcript and wave.

Page 32 of 133

Example 01

The following example demonstrates the Verilog HDL code of a half adder.

module HA(A,B,S,C);
input A,B;

output S,G;

assign S=A"B;
assign C=A&B;
endmodule

AU AN WNR

The following Verilog HDL code demonstrates the Testbench Module of the half adder of

Example 01 for random test inputs.

“timescale 1ns/1ps
module HA_TB;
reg a,b;

wire s,C;

HA Ha_dut(a,b,s,c);
initial

begin

O oo NOULAN WNR

NN R
N R O
H
g o
L
TR
Loal
o
]

#5 Sfinish;
end
endmodule

~
W

~
EN

The previous Testbench Module of half adder can only generate test vectors for a certain interval
but not periodic. The following Testbench Module of half adder. The forever loop-like procedural

block “always” is used to generate periodic inputs.

1 | ‘timescale 1ns/1ps
2 | module HA_TB;
3 | rega,b;
4 | wire s,c;
5| HA Ha_dut(a,b,s,c);
6 | initial
7 | begin
8 a=0; b=0;
9| end
10
11 | always
12 #10 a=~a; // fortime period 20 unit
13 | always

Page 33 of 133

14 #5 b="b; // for time period 10 unit

15 | initial
16 #20 Sfinish;
17 | end

18 | endmodule

Example 02

The following example demonstrates the Verilog HDL code of a full adder.

module Full_Adder(sum, carry, a, b, c);
input a,b,c;

output sum, carry;

assign sum=a’b”\c;

assign carry= (a&b) | (b&c) | (c&a);
endmodule

AU AN WNR

The following Verilog HDL code demonstrates the Testbench Module of the full adder of Example
02 for random test inputs.

“timescale 1ns/100ps
module Full_Adder_TB;
reg a,b,c;
wire sum, carry;
Full_Adder FA_DUT(sum,carry,a,b,c);
initial
begin
Smonitor(Stime, " a=%b, b=%b, c=%b, sum=%b, carry=%b", a ,b, c, sum, carry);
#0 a=0; b=0; c=1;
#5 b=1;
#5 a=0; b=1; c=1;
#5 Sfinish;

O o NOOULAN WNR

N R R R
W N RO

end
endmodule

~
EN

Page 34 of 133

Example 03

The following example demonstrates the Verilog HDL code of a 2 to 4 decoder.

1 | module decoder_2to4(s,e,y);

2 | input [1:0] s;

3 | input e;

4 | output reg [3:0]y;

5 | integer k;

6 | always@ (s,e)

7 | begin

8 for (k=0;k<=3;k=k+1)

9 begin
10 if ((s==k) && (e==1))
11 ylkl=1;
12 else
13 y[k]=0;
14 end
15 | end
16 | endmodule

The following Verilog HDL code demonstrates the Testbench Module of the 2 to 4 decoder of

Example 03.

1| “timescale 1ns/1ps
2 | module decoder_2to4 TB;
3 | reg [1:0]s; reg e;
4 | wire [3:0]y;
5 | decoder_2to4 dut(s,e,y);
6 | initial
7 | begin
8 Smonitor(Stime, " e=%b, s=%b, y=%b", e ,s, y);
9 e=0;

10 #5 e=1; s=2'b00;

11 #5 s=2'b01;

12 #5 s=2'b10;

13 #5s=2'b11;

14 #5 s=2'b00;

15 #5 s=2'b01;

16 #5 s=2'b10;

17 #5 s=2'b11;

18 #5 Sfinish;

19 | end

20 | endmodule

Page 35 of 133

The following Verilog HDL code demonstrates another Testbench Module to verify the 2 to 4
decoder of Example 03 which is efficient than the previous one.

“timescale 1ns/1ps
module decoder_2to4_TB;
reg [1:0]s; reg e;

wire [3:0]y;

integer i,j;

decoder_2to4 dut2(s,e,y);
initial

begin

CONOY U NN WN R

e}

e=0;
Smonitor(Stime, "e=%b, s=%b, y=%b", e ,s, y);
for (j=1;j<=2;j=j+1)
begin
for (i=2'b00;i<=2'b11;i=i+1)
begin

N R R R R R
AN WN RO

#5 e=1; s=i;

=
(o))

end

=~
N

end
#5 Sfinish;

~
(04}

end
endmodule

~
o

N
(=]

Example 04

A magnitude comparator is a combinational circuit
that compares the magnitude of two n-bit numbers A
and B. The comparison of two numbers is an operation
that determines whether one number is greater than,
less than, or equal to the other number. The outcome
of the comparison is specified by three binary
variables G, E, and S that indicate whether A>B, A=B,
and A<B respectively. In a magnitude comparator at a
time, only one output variable can be logically high.

n-bit
Magnitude

Comparator

m—p [(A:B)

B —p — 5 (A<B)

Block diagram of a magnitude comparator

The following example demonstrates the Verilog HDL code of a 2-bit magnitude comparator. The

module has 2 inputs A and B each are 2-bit numbers
When,

A>B outputs G=1, E=0,S=0

A=B outputs G=0, E=1, S=0

A<B outputs G=0, E=0, S=1

Page 36 of 133

1 | module mag_comp_2bit(A,B,G,E,S);
2 | input [1:0]A,B; // declaring 2-bit input variables A and B
3 | output reg G,E,S;
4 | always@* // * symbol means the sensitivity list will be detected automatically
5 | begin
6 if (A>B)
7 begin
8 G=1'b1;
9 E=1'b0;

10 S=1'b0;

11 end

12 else if (A==B)

13 begin

14 G=1'b0;

15 E=1'b1;

16 S=1'b0;

17 end

18 else

19 begin

20 G=1'b0;

21 E=1'bO0;

22 S=1'b1;

23 end

24 | end

25 | endmodule

The following Verilog HDL code demonstrates another Testbench module to verify the 2-bit

magnitude comparator of Example 04.

“timescale 1ns/1ps
module mag_comp_2bit_TB;
reg [1:0]A,B;
wire G,E,S;
integer i,j;
mag_comp_2bit dut(A,B,G,E,S);
initial
begin
9 Smonitor(Stime, " A=%b, B=%b, G=%b, E=%b, S=%b", A, B, G ,E, S);
10 for (j=2'b00;j<=2'b11;j=j+1)
11 begin
12 A=j;
13 for (i=2'b00;i<=2'b11;i=i+1)
14 begin
15 #5 B=i;
16 end
17 end

CON O U AN WN R

Page 37 of 133

18 #0 Sfinish;
19 | end
20 | endmodule

Example 05

The following example demonstrates the Verilog HDL code of delayed gates

U1 \
a B
b > #3 j f U2

c >

#4

out

“timescale 1ns/1ps

module delay_gate(a,b,c,f,out);
input a,b,c;

output out,f;

and #(5) U1(f,a,b);

or #(4) U2(out,f,c);

endmodule

NSO OGN WNR

The following Verilog HDL code demonstrates another Testbench module to verify the logic

arrangement shown in Example 05.

“timescale 1ns/1ps
module delay_gate TB;
reg a,b,c;
wire out,f;
delay_gate dut(a,b,c,f,out);
initial
begin
a=1'b0; b=1'b0; c=1'b0;

9 #10 a=1'b1; b=1'b1; c=1'b1;
10 #10 a=1'b1; b=1'b0; c=1'b0;
11 #20 Sfinish;

12 | end
13 | endmodule

CONOY U NN WN R

Page 38 of 133

Simulating Testbench

24. Find the following icon on your PC and double-click on the icon to run the software.

(ModelSim - Intel FPGA Starter Edition Model Technology ModelSim - Intel FPGA Edition

vsim 2020.1 (Quartus Prime 20.1))

M

25. The following window will pop up.

M Modelsim - INTEL FPGA STARTER EDITION 2020.1

- o
File Edit View Compile Simulste Add Library Tools Layout Bookmarks Window Help

AT m| smage ‘ B N -8 Layout HoDesign
H ol x| | gg Wave - Defauit

- ‘ Colmniayout [A11Co1
X
[path

€:/Usars Adnan/Desktop/aa/sa/az
SMODEL_TECH/

BGA_lite/20.1/modelsin ase/wini2aloen/../modelsim.ini

Onsto 1us <No Design Loaded> <No Cantext>

26. Execute File > New - Project. The Create Project window will appear.

™M ModelSim - INTEL FPGA STARTER EDITION 2020.1

File Edit WView Compile Simulate Add Library Toeols Lz

= | rooer =
Open... » |
Load » Project... i Bo 4 by
Close Library... -
Import g Debug Archive — B

Report...

Change Directory...

27.In the Create Project window change the Project Location to your directory (e.g.

D:/150205022/Lab-1/Full_Adder) and give a name in the Project Name field. After that
click on the OK button.

[Project name must be same as the top module]

Page 39 of 133

M Create Project >

Project Name
Full_Added

Project Location
D:/150205022/Lab-1/Full_ Adder Browse...

Default Library Name
work

—Copy Settings From
modelsim ase/modelsim.ini Browse...

% Copy Library Mappings (Reference Library Mappings

I OK I Cancel ‘

28. The Add items to the Project window will appear. Select the Crete New File button.

M Add items to the Project >
Click on the icon to add items of that type:

]]

Create New File Add Existing File

™M 3

Create Simulation Create New Folder

Close

29. In the Create Project File window fill up the File Name field which must be identical to
the project name and top module name. Also, select Verilog from the Add file as type
dropdown menu. And then click the OK button.

M Create Project File >
File Name
Full Addex] Browse...
— Addfileastype] [Folder
Werilog wl [Top Level vl

o ICancel|

Page 40 of 133

30. The Add items to the Project window will appear again. Click on the Close button.

M Add items to the Project X
Click on the icon to add items of that type:

[B

Create New File Add Existing File
= =
M i
Create Simulation Create New Folder
Close

31. Now the ModelSim window will look like the following figure.

ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1 - O *
File Edit View Complle Simulate Add Project Tools Layout Bookmarks Window Help

J ColumnLayout [A11Columns

|- 8/
{#¥] 5022/Lab-1/Full_AdderJFull_Adder 77 +| & x| | gm] wave - Default + 2 x|

*Tane smndrpe (oo | T Y A

l : ? vemlcgo 1 .I- |

e 1]

[T
[T | | L : o] |
mubrary ||21 Project * | <3| || X/Find: | &8 || | SearchFor = | [~ {a} W i*
-4 Transcript o + @ x|
Loading project aa =
+ reading C:/intelFPGA_lite/20.1/modelsim ase/win32aloem/../modelsim.ini
Loading project Full_Adder
ModelSim > -

Ons to 497 ns Project : Full_Adder |<No Design Loaded> p Context>

Page 41 of 133

32. Now to open the editor window execute File - Open...

M ModelSim - INTEL FPGA STARTER EDI
m Edit View Compile Simulate

New » T -
C]:Hl... T
Load 3

Close Project

Import »

ﬁ' Open File
» . 150205022 Lab-1 Full_Adder

Organize MNew folder

e [Name Date modified Type
B vork 04-Now-22 1:37 AM File folder

MR This PC
= . Full_Adder.v 04-Nowv-22 1:46 AM Text Documen

#" 3D Objects

M Desktop

B Documents
Downloads
Music

B3 Pictures

= Videos

= Local Disk (C:)

== New Volume (D:

File name: | Full_Adder.v AN HDL Files (*v;* vl *.vhd:* vhdl* ~

N

34. In the editor window write the Verilog module of your design. And save using the shortcut
executing Ctrl+S every time.

| D:/150205022)Lb-1Ful_Adder Full_Adder.v - Default * i 4+) X|
Ln# J

| module Full Adder(sum, carry, a, b, c);
2 input &,b,c;

3 QUCpUL Sum, CAarry;

4 agsign sum=a‘b*c;

5 assiogn carry= (asb) | (bec) | (csa):
€ sndmoduls

Page 42 of 133

35. Now click on the Compile All icon for compiling the design.
[alternatively, execute Compile - Compile All]

o I

O-# W || xOX Bl 4|

36. After successful compilation you will get the following message will appear in the
Transcript window.

A Transarpt i 4 X
reading C:/intelFPGR 1ite/20.1/modelsin ase/wind2aloen/../modelsim. ini j
Loading project Full Adder

Compile of Full Adder.v was successful.

ModelSim> v

37. Now, to write the test bench code create a new Verilog file at first click on the project
window then execute Project-> Add to Project - New File...

Project | Tools Layout Bookmarks Window Help

Edit X h
YECE) =)
I Add to Project | NewFie...
Remove from Project Existing File...
Update Simulation Configuration...
Folder...

Project Settings...

38. Now in the Create Project File window, fill up the File Name field which will be our test
bench module name. Also, select Verilog from the Add file as type dropdown menu. And
then click the OK button.

M Create Project File s
File Name
Full Adde r_TE! Browse...

—Addfleastype————— [Folder

IVerilog vl Top Level vl
oK I Cancel |

Page 43 of 133

39. Now there will be two files under the project.

§ Ful_Adder.v Verlog 0 11/04/202203:20:44 ...
|| Ful_Adder TB.v P Veriog 1 11/04/202203:25:15...

40. Open the testbench file following step 10 and write the testbench code in the editor.

1 ‘timescale 1ns/100ps

2 [Elmodule Full Adder TB;

d reg a,b,c;

4 wire sum, carry;

5 Full Adder FA DUT(.sum(sum),.carry(carry),.a(a),.b(b),.c(c)):
o

7

initial
H begin
fmonitor(stimg, " a=th, b=ib, c=tb, sum=ib, carry=ib", a ,b, ¢, sum, carry);
9 #0 a=0; b=l; c=1;
10 #5 b=1;
11 #5 a=1; b=1; c=1;
12 §5 sfinish;
13 rend

14 *endmodule

41. Now click on the Compile All icon for compiling the design.
[alternatively, execute Compile - Compile All]

O-AiwM |?1¢’“’J1ﬁH*~i€*m‘

42. Now to simulate the design click on the Simulate icon.

[alternatively, execute Simulate-> Start Simulation..]

O-8E || Kox x| S

Page 44 of 133

43. The Start Simulation window will appear. From the Design tab execute work = <click

on your test bench module> and click on the OK button.

M Start Simulation ped
Desiml\irDL]\feriog]Libraries]SDF]Oﬂ'lers] ﬂﬂ
-TIName r|T3||'|:n|= [Paih I I ﬂ

Library D:/150205022/Full_Adder fwork

Module D:\150205022\Full_Adder \Full_Adder_...
Maodule D:\150205022\Full_Adder \Full _Adder.v
Library SMODEL_TECH/. . fvital2000

Library SMODEL_TECH/.. fverilog

Library SMODEL_TECH/.. falterafverilog/twent...
Library SMODEL_TECHY/.. falterafverilog/twent. ..
Library SMODEL_TECHY/.. falterafvhdlftwentyn. ..
Library SMODEL_TECHY/.. falterafverilog/twent. ..

+i-l twentynm_hip Lbrary $MODEL_TECH/../alterafvhd/ftwentyn... «|
KN | =]
~Design Unit(s) Resolution—————

[work.Full_adder TB ’7|default wl

44. The following message will appear in the transcript if everything is done correctly.

45.

End time: 03:44:35 on Now 04,2022, Elapsed time: 0:04:38
Errcors: 0, Warnings: 2

wsim —gui work.Full Adder TB

Start time: 03:44:35 on Nowv 04,2022

Loading work.Full Adder TB

Loading work.Fuall Adder

L T TR T T

Graphically the functionality of the design can be checked from the wave window of the
ModelSim Simulator. Execute view = wave if it doesn’t appear automatically. Now go to
the Wave window and select all the input and output variables of the Objects window
and by right-clicking on your mouse execute Add Wave to place them in the Wave

window.
gm| Wave - Default

View Dedaration
View Memory Contents

ave
Add wWave To
Add Dataflow Ctrl+D
Add to »

UPF »

Copy Ctrl+C
Find... Ctrl+F

Page 45 of 133

46. All the input and output variables will be placed on the wave window and the wave
window will look like the following figure.

1 Wave - Default e + %

& [Ful_Adder TEJa

47. Now to evaluate the outputs write run 15 ns on the Transcript of ModelSim. Alternatively,
we can run the wave output using the Run icon by typing the Run length.

[Give run length according to your requirement.]

48. The Finish Vsim window will appear. Click No otherwise the ModelsSim will be closed
immediately.

M Finish Vsim

e Are you sure you want to finish?
Yes ‘ No

Page 46 of 133

49. Now for the given test vectors the functionality of the design can be verified from the
wave output generated by the ModelSim simulator.

18 Viave -Defat ik RafiifEd
_ | e _. I

4 [Ful_Adder TBfcarry [5ti

| ' K B

X[Find: ﬁl j ﬂ“ SeachFor v | [{8 ¥

50. Functionality of the design can also be verified from the transcript generated by the
ModelSim simulator. Execute view = Transcript if it doesn’t appear automatically.

f{ Transaript

sim:/Full Adder TB/carry
VSIM 3> run
0 a=0, b=0, c=1, sum=l, carry=(
5 a=0, b=1l, c=1, sum=0, carry=
10 a=1, b=l, c=1, sum=l, carry=l
‘' Note: $finish : D:/150205022/Full_Adder/Full Adder IB.v(l2)
Time: 15 ns Iteration: 0 Instance: /Full Adder TB

e e e AR B e

Dreak 1n nodule full AQder 1o at L./ laUcUal IUll AOQEI l adder [b.V llne

Page 47 of 133

Post Lab Tasks

1. Write a testbench program to test a full adder circuit with the signal shown below.

4] 10ms 20ms 30ms 35ms

2. Differentiate between -
a. Sfinish and $stop command.
b. Smonitor and $display command.

3. Isit possible to check the functionality of a sequential circuit from the transcript only?
Can we use the “always” procedural block in the Testbench module?

5. lsit possible to generate periodic stimuliin the testbench? If possible, generate the signals
of task-1 for two periods.

Page 48 of 133

Lab-3: Modeling Sequential Systems and Finite
State Machine Using Verilog HDL

Objective
The main objectives of this lab are:

e Functional verification of sequential circuits using Verilog Testbench.
e Modeling finite state machine and its functional verification using Verilog Testbench.

Introduction

A digital system can be either in the form of combinational logic or sequential logic. In
combinational logic, the output of a circuit depends only on the presently applied inputs. On the
other hand, the output of a sequential circuit depends on the applied input and the present
states. Most practical digital systems are sequential. To design a digital system, the behavioral
abstraction is used as a reference to create and refine a synthesizable register transfer level (RTL)
abstraction that captures the desired functionality required by the design specification.

Example 01

Flip-flops are the building blocks of sequential circuits. In the following example, the Verilog HDL
code of a positive edge-triggered T flip-flop with reset is demonstrated.

module T_FF(T,clk,reset,Q);
input T,clk,reset;
output reg Q;
always@(posedge clk)
begin
if(reset==0)
begin
if (T)
Q<="Q;
else
Q<=

CONOY U NN WN R

N R R
N RO L

end
else

Q<=0;
end
endmodule

N R R
N W

=~
(o))

Page 49 of 133

Testbench Module of Example 01

The following Verilog HDL code demonstrates the Testbench Module of the T flip-flop of Example

01.

“timescale 1ns/1ps
module T_FF_TB;
reg T,clk,reset;
wire Q;
T_FF dut(T,clk,reset,Q);
initial
begin
T=0; clk=0; reset=1;

O oo NOOULLAN WN R

end

always
#2 clk="clk;

initial

begin
#6 reset=0; T=1;
#4 reset=1; T=1;
#4 reset=1; T=0;
#2 reset=0; T=0;
#2 Sfinish;

R R R RRRR_RRR
NN WNRO

end
endmodule

N =
S

Example 02

The following example demonstrates the Verilog HDL code of a positive edge-triggered JK flip-

flop with clear.

module JK_FF(clk,J,K,Q,clear);
input clk,J,K,clear;

output reg Q;

always@ (posedge clk)

begin

if(clear==0)

begin

CONOY U AN WN R

if (J==0 && K==0)

9 Q<=Q;
10 else if (J==0 && K==1)
11 Q<=0;
12 else if (J==1 && K==0)
13 Q<=1;
14 else

Page 50 of 133

15 Q<="Q;
16 | end

17 | else

18 Q=0;

19 | end

20 | endmodule

Testbench Module of Example 02

The following Verilog HDL code demonstrates the Testbench Module of the JK flip-flop of

Example 02.

“timescale 1ns/1ps
module JK_FF_TB;
reg clk,J,K,clear;
wire Q;
JK_FF JK_dut(clk,J,K,Q,clear);
initial
begin
clk=0; J=0; K=1;clear=0;

O o NOULAN WNR

end
always
#2 clk="clk;
initial
begin
#2 clear=1; J=1; K=0;
#4 clear=0; J=0; K=1
#4)=1;
#4)=0;
#4 Sfinish;

N R R R R
AN WNRKRO

~
U

’

T N Y
0 N D

End
endmodule

N =
S

Page 51 of 133

Example 03

In this example a 4-bit ripple carry counter will be designed using the submodule of a T flip-flop
and each T filp-flop is designed using leaf module of D flip-flop. The block representation of the
ripple carry counter is shown below.

clock —d> +ffo

ql

__

D> 1

> tff3

4-bit ripple carry counter

d_ff
clk—a>

T flip flop using D flip flop

The following example demonstrates the Verilog HDL code of a 4-bit asynchronous ripple-carry

country as shown in the following block diagram.

CONOY U AN WN R

module rc_counter(q,clock,reset);
output [3:0] g;

input clock,reset;

t_ff tff0 (q[0], clock, reset);

t_ff tffl (q[1], q[0], reset);

t_ff tff2 (q[2], q[1], reset);

t_ff tff3 (q[3], q[2], reset);
endmodule

module t_ff (q,clk,r);//T-Flip-Flop
output q;

input clk,r;

wire d;

d_ff dff1(q,d,clk,r);

not n1(d,q);

endmodule

module d_ff (q,d,clk,r);//D-Flip-Flop
output regq;
input d,clk,r;
always @(posedge r or negedge clk)
begin
if (r)
g<=1'b0;

Page 52 of 133

25 else

26 g<=d;
27 | end

28 | endmodule

Testbench Module of Example 03

The following Verilog HDL code demonstrates the Testbench Module of the 4-bit asynchronous

ripple-carry counter of Example 03.

“timescale 1ns/1ps
module rc_counter_TB;
reg clk, res;
wire [3:0]q;
rc_counter rc_counter_dut(q,clk,res);
initial
begin
clk=0;

O o NOULAN WNR

end

always
#5 clk="clk;

initial

begin
Smonitor(Stime, " clk=%b, res=%b, g=%b", clk, res, q);
res=1;
#15 res=0;
#180 res=1;
#10 res=0;
#20 Sstop;

NRRRRRRRRKRKR
QLVWWNIOTLANWNRO

end
endmodule

N
~

Example 04

The following example demonstrates the Verilog HDL code of a simple 8-bit accumulator. The
module is designed in such a way that when reset=0 the output is set to 0 and when reset=1 the

output adds the input.

module accu(in, acc, clk, reset);
input [7:0] in;
input clk, reset;
output reg [7:0]acg;
always @(posedge clk)
begin
if (reset)

NOOOL NWNR

Page 53 of 133

8 acc<=0;

9 else
10 acc<=acc+in;
11 | end

12 | endmodule

Testbench Module of Example 04

The following Verilog HDL code demonstrates the Testbench Module of the accumulator of
Example 04.

“timescale 1ns/1ps

module accu_TB;

reg [7:0] in;

reg clk,reset;

wire [7:0] out;

accu dut(in, out, clk, reset);
initial

CONOY U AN WN R

clk = 1'b0;
9 | always
10 #5 clk = ~clk;
11 | initial
12 | begin
13 #O reset<=1; in<=1;
14 #5 reset<=0;
15 #50 Sfinish;
16 | end
17 | endmodule

Example 05

In this example, a 4-bit Arithmetic Logic Unit (ALU) shown in the following figure will be designed
using Verilog HDL. The top module of the ALU is alu_4bit and it is designed using three sub-
modules: logical_unit, arithmetic_unit, and control_unit. In the design, the two 4-bit inputs A
and B are fed to the inputs of arithmetic_unit and logical_unit modules to perform two different
arithmetic operations and two different logical operations according to the function table given
below. Thus the arithmetic_unit and logical_unit generates four outputs y1,y2,y3, and y4 which
are fed to the inputs of control_unit module which generates the 8-bit output Y from the
v1,y2,y3 and y4 depending on its 2-bit Opcode input. The output Y is also sensitive to the positive
edge of the clk input.

Page 54 of 133

clk

>
A

Arithmetic
Unit

Inputs

Logical Unit

—+ | y1=A+B

> | y2=A-B

> y3=A&B

—— | y4=A®B

le——

Control Unit

r

Opcode D

The function table of the ALU is given below.

Function Table

Opcode Output (Y) Description of function
00 A+B Add Ato B
01 A-B Subtract B from A
10 A&B Bitwise AND
11 ADB Bitwise XOR

The following Verilog HDL code demonstrates the ALU mentioned in Example 05.

outputs

input [3:0]A,B;

input [1:0]Opcode;
input clk;

output [7:0]Y;

wire [7:0ly1,y2,y3,v4;

O oONOTULANWNR

=~
(=)

endmodule

N R
W N R

input [3:0]x,y;
output reg[7:0]yl,y2;

=~
BN

module alu_4bit(A,B,Y,clk,0pcode);

arithmetic_unit sm1(A,B,y1,y2);
logical_unit sm2(A,B,y3,y4);
control_unit sm3(y1,y2,y3,y4,clk,0Opcode,Y);

module arithmetic_unit(x,y,y1,y2);

Page 55 of 133

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

always@(x,y)
begin
yl<=x+y;
y2<=x-y;
end
endmodule

module logical_unit(x,y,y3,y4);
input [3:0]x,y;

output [7:0]y3,v4;

assign y3=x&y;

assign y4=x"y;

endmodule

module control_unit(y1,y2,y3,y4,clk,Opcode,Y);
input [7:0]y1,y2,y3,y4;

input [1:0]0Opcode;

input clk;

output reg[7:0]Y;

always@(posedge clk)

begin
if(Opcode ==2'b00)
Y<=y1;
else if(Opcode ==2'b01)
Y<=y2;
else if(Opcode ==2'b10)
Y<=vy3;
else if(Opcode ==2'b11)
Y<=v4;
else
Y<=0;
end
endmodule

Testbench Module of Example 05

The following Verilog HDL code demonstrates the Testbench Module of the 4-bit ALU of Example

05.

CONO U AN WN R

‘timescale 1ns/1ps

module alu_4bit_TB;

reg [3:0]A,B;

reg [1:0]0pcode;

reg clk;

wire [7:0]Y;

alu_4bit dut(A,B,Y,clk,Opcode);
initial

Page 56 of 133

10
11
12
13
14
14
16
17
18
19
20
21

begin
clk = 1'b0; Opcode=2'b00; A=4'b0100; B=4'b1100;

end

always
#2.5 clk = ~clk;

initial

begin
#5 Opcode<=2'b01; A=4'b1000; B=4'b0111;
#5 Opcode<=2'b10; A=4'b1111; B=4'b1011;
#5 Opcode<=2'b11; A=4'b1001; B=4'b1010;
#5 Sfinish;

end

endmodule

Finite State Machine Design

In a sequential circuit, outputs depend not only on the applied input values but also on the
internal state. The internal state also changes with time. As the number of states in a sequential
circuit is finite it is also referred to as a Finite State Machine (FSM). FSMs need memory to hold
the current state and logic devices to determine the next state. Elevators(lift), vending machines,
traffic signal systems, password generators etc. are examples of FSM.

There are two types of finite state machines called the Mealy machine and the Moore Machine.

In Mealy machines, the output is a function of the current state and inputs. In Moore machines,
the output is a function of only the current state. To design FSMs, we need to find the state

transi

tion diagram or the state table.

FSMs are modeled in Verilog with an always block defining the state registers and combinational
logic defining the next state and output logic.

INpUt —

3\ 3 {

. Current
Transiion| _ | State | sate | Output |Output

Logic Memory [T Logc Input —

A

Clack—*

i / \

A1

Moore Machine

Current
Transition State | stte ‘ Output |Output
Logic ™ Memory ‘ Logic .
Clock—*
Mealy Machine

Page 57 of 133

Example 06

In this example, the Verilog HDL code of a Mealy machine is demonstrated that generates output
‘1’ when sequence 101 is detected in a bitstream.

o/0

1/0

0o/0

State Transition Diagram

The following Verilog HDL code demonstrates the sequence detector mentioned in Example 06.

CONOY AN WN R

NNNNNNNNNRRRRRRRRRR
O NOOULANWNROODLOGLONIINULNWNRKROO

module seq_101(i,clk,out);
input i,clk;
output reg out;
localparam S0=2'b00, S1=2'b01, S2=2'b10;
reg [1:0]state;
always@ (posedge clk)
begin
case (state)
S0O: begin
out<=i?0:0;
state<=i?51:50;
end
S1: begin
out<=i?0:0;
state<=i?51:52;
end
S2: begin
out<=i?1:0;
state<=i?S0:S0;
end
default:
begin
out<=0;
state<=S0;
end
endcase
end
endmodule

Page 58 of 133

Testbench Module of Example 06

The following Verilog HDL code demonstrates the Testbench Module of the sequence detector

of Example 06 where 0101001010-bit stream is generated.

O oo NOOULLAN WN R

R R R RRRRRR
CONOY UL N WNRKRDO

“timescale 1ns/1ps
module seq_TB;
regi,clk;
wire out;
seq dut(i,out,clk);
initial
clk=0;
always
#2 clk="clk;
initial
begin
#0 i=0;
#5i=1; #4 i=0; #4 i=1, #4 i=0;
#4 i=0; #4 i=1; #4 i=0; #4 i=1;
#4 i=0;
#4 Sfinish;
end
endmodule

Page 59 of 133

Post Lab Tasks

1.

Design a negative edge triggered D flip flop with reset and verify its functionality using
testbench.

In Example 5 how many 1s will be generated at the output if the input bitstream is
010101007 Verify your answer using testbench.

Write a Verilog program to implement the digital system represented by the following
state transition diagram of a Mealy machine. Assume that system has input and output
variables in and Y. The system functions when the positive edge of the clock is detected.
1/0

0/0

Design a Mealy machine to detect the 010 sequences hence verifying its functionality

using testbench.
The state transition diagram of a two-bit counter is shown below. Assuming that each

state changes when a positive edge clock is detected. Design and verify the system using
Verilog HDL.

reset=3

Page 60 of 133

Lab-4: Introduction to Unix Shell

Objective
The main objectives of this lab are:

e Logging into the Cadence software installed Linux server.

e To get started with the Linux environment.

e To comprehend the file and directory management using shell command.
e To get familiar with Vim text editor.

Introduction

Electronic Device Automation (EDA) tools are required to run for a long time which consumes a
huge amount of memory (RAM), runs in multiple threads/processes and are multiuser programs.
For that, Unix or Linux is the ideal choice to run (EDA) tools.

In the upcoming lab classes, we will use different cadence tools preinstalled on the Linux server.
For that, we have to login into your student account from the Windows operating system based
computer allocated for the student use.

Steps to Login into Linux Server

The following flowchart summarizes the steps to login into the Linux server.

Start XLaunch
Start Putty Open VLSI_LAB
session

v

Login ti server
Type the commands one by one
and press Enter:
csh
source cshrc_q
nautilus

Page 61 of 133

The detailed instructions are given below

1. Find the Desktop shortcut icon for XLaunch. Double-click on it. Click Next, Next, Next,
Finish (in that order) in the windows that pop up one after another.

P26

XLaunch -
Shortcut

After it starts, you will see the Xming icon at the bottom right corner of your Desktop
screen.

1144 AM
627202

'.-"5:‘ 7] ds E

2. Find the icon for Putty. Double click on it to open it. ‘Putty Configuration” window will
pop-up

3. Select VLSI_LAB under the ‘Saved Sessions’ category. Click Load and then click Open.

&R PUTTY Configuration x
Category:
EI Sessmn Basic options for your PuTTY session
: - Logging . N
) Terminal Specify the destination you wantto connectto
- Keyboard Host Name (or IP address) Port
- Bell [172.16.16.160 | |22 |
E_}w-i-aneos:Lures Connection type:
- Appearance (JRaw () Telnet () Rlogin @SSH () Serial
$9ha“|"°_“r Load, save or delete a stored session
- Translation
- Selection Saved Sessions
- Colours |VLSI Lab
[=-Connection
- Data Load
- Proxy
- Telnet Save
- Rlogin Delete
- S5H
- Sernal
Close window on exit
() Always (I Never (@) Only on clean exit
3
About Open Cancel

Page 62 of 133

Now you will see a Terminal window which prompts you for login.
EP 172.16.16.160 - PUTTY = O X

Log in to your workstation using user ID and password. Your user name and your
password will be your student ID. When you are typing your password, the command
window will not display the characters you type in, so make sure you are typing the right
password. After logging in to your account, Terminal window should look like the
following:

150205105@aust:~ - O X

from 172.16.16.166

Type csh and press the ‘Enter’ key.
A 150205105@aust:~ — O x

Then type source cshrc_q and press the ‘Enter’ key. The following message will be
displayed in the Terminal window: Welcome to Cadence tools Suite That means you can

use Cadence tools now.
2 150205105@aust:~ — O x

Finally Type nautilus and press the ‘Enter’ key to enter the GUI of your account. The GUI
window will look like the following snapshot.
EF 150205105@aust~ — O *

Page 63 of 133

9. The GUI of your account will look like the following window

@ Lesktop

Terminal in Unix

1. Right-click on the blank space of your Linux desktop a window will pop up and then select
Open_Terminal .

€ Desktop 1 150205105@aust~ - O X

File Edit View Terminal Tabs Help
150205105@aust ~1%]

Create Folder
Create Launcher.

Create Document

Clean Up by Name
[¥] keep Aligned

Change Desktop Background

Page 64 of 133

Lab Task

The following flow chart summarizes the tasks to be performed in Lab-04.
\ Log in to Server in the GUI mode |

| Open the Terminal |

v

‘ Find the location of the present directory

v

Create a directory as Lab_4 and inside it create
another two directories as direct_1 and direct_2

/

Go to direct_1 ‘

v

Create Two files
test-1.txt and test-2.txt

v v

test-1.txt test-2.txt
Name: echo “Hello VLSI Enthusiasts”
Student ID:
Semester:

Read the content inside the test-1.txt and source
the test-2.txt files

v

Copy the contents of test-1.txt into a new file test-
3.txt

v

Delete the file test-1.txt ’—b‘ Go to direct_2

v

‘ Copy the test-3.txt file from the direct_1

v

‘ Check the content of the file

v

‘ Copy the directory direct_1 into the direct_2

v

Go back to the main directory where direct_1 and direct_2 directories are created

v

Delete the directory direct_1

Page 65 of 133

Directory Management in Unix

Command Description Syntax
pwd print name of current/working directory. pwd
Is lists directory contents. Is
Is -Itr lists directory contents by arranging them Is -Itr
according to time by using the -Itr switch.
tree Show the file hierarchy inside a directory tree
mkdir make directories. mkdir
<directory_name>
cd Change directory. cd <directory_path>
cd ~/ Goes to the home directory cd ~/
cd ™~ cd ~
cd .. Goes to the previous directory. cd ..
cd ../ cd../
cd ../../ Goes two directories back. cd./../
Vim Editor in Unix
Command Description Syntax
touch Creates a file.(Extension can be .txt, .v, .tcl, etc) touch test.txt
press insert/ins | Enables the INSERT mode
W Writes/saves the text file.
:q Quits from vim editor.
'w(Writes the text and then quits the vim editor. The
:wq! Forcefully writes and quits the vim editor through bang(!) comn'wands. of
:set nu Shows the line numbers. the vim edltsr
:<line no> The cursor moves to the specified line no. Zizcuted afteer
:set nul! Removes the line numbers. pressing the
:/xyz Used to search all the “xyz” from the beginning Esc key.
(Use n to move from one to another)
?Xyz Used to search all the “xyz” from the bottom
:%s=x=y=¢ Replaces all x with y
u Undo
Press Ctrl+R Redo
Reading and sourcing a file
Command Description Syntax
cat Checks the content inside a file. cat <file_name>
source Reads and executes commands from the source <file_name>
J file. ./<file_name>

Page 66 of 133

Files and directory manipulation in Unix

Command Description Syntax
cp Copies files and directories. cp <source_file> <destination_file>
rm Remove files. rm <directory_name>
rmdir Removes empty directories. rmdir <directory_name>
rm -rf Removes directories containing files by | rm -rf <directory_name>
force recursive using force recursive
switch.
mv Moves one or more files and directories to | mv<source_file> <destination_dir>
a given location (if the location is not
defined. it renames files on the current
location).

Other Useful Commands

Command/Key Description
history Prints the previous commands executed in the bash terminal.
(Syntax: history)
man Shows the documentation of any command
(Syntax: man pwd)

Shortcut Keys

Command/Key Description
Up/Down Arrow keys Scrolls through command history.
Tab key Used to complete the command you are typing.
Ctrl + Shift + C Copies the highlighted command to the clipboard.
Shift + Insert Pastes the contents of the clipboard.
Ctrl + L Clears the terminal
Bash Script

Bash scripts are typically used for handling directories and files, not for coding. But it can
be useful for scripting with various arithmetic use cases and scenarios. Bash only supports integer
arithmetic, so if we need to perform calculations with floating-point numbers, have to use
separate utility in bash. There are several ways and syntax of performing arithmetic operations,
using conditions and loops in bash. The below code is just a simple demonstration of arithmetic
operations, if..else.. statement, for loop and array declaration in bash. A bash script can be

Page 67 of 133

written using the vim editor and it should be saved with the extension .sh . The commands inside
the script can be executed by sourcing the script.

O o NOULAN WNR

=~
(=)

11
12
13
14
15
16

17
18

19
20
21
22

a=10
read -p "enter b:" b #Stores user’s input in b variable by prompting in display using -p
sum=$(($a+5b))
sub=5(($a-Sh))
mult=5(($a*$b))
div=5(($a/$b))
echo "sum=Ssum
Sa-Sb=Ssub
Sa*Sbh=Smult
Sa/Sb= Sdiv"
#Using if..else.. statement to find whether a is even or odd
if [$(($a%2)) =="0"]
then
echo "Sa is even"
else
echo "$a is odd"
fi

c=(Ssum Ssub Smult Sdiv) #storing different variables in.array c
elements=S{#c[@]} #Counts the no of elements present in the array c

for((i=0;i < Selements;i++)) #Using for loop to display all the elements present in array c
do

echo "${c[i]}"

done

Post Lab Tasks

How fractional values can be handled in bash?
Write a bash script to perform the following arithmetic operation.
y = sin(5) + €3 + V3 + 23
Write a bash script that will show your root and home location whenever it is sourced.
Write a bash script that will create the following hierarchy in your home.

Inside the Linux_Practice
directory create three directories
asD_1, D_2 and D_3

Create a directory as
Linux_ Practice

Inside the D_1 create files as
tl.txt and t2.txt and write “hello
world” inside the tl.txt

Inside the D_2 create one file as
sl.sh

Inside the D_3 copy the tl.txt
file from D_1 directory

Page 68 of 133

Lab-5: Synthesis using Genus Synthesis Solution

Objective
The main objectives of this lab are:

e Familiarization with synthesis flow.
e Setting up synthesis constraints.
® Generating optimized gate-level netlist and Standard Design Constraints.

Introduction

Synthesis is a process of transforming RTL (a description of a circuit expressed in a language such
as Verilog or VHDL written in behavioral modeling or data flow modeling) to technology-
dependent or independent gate-level netlist including nets, sequential and combinational cells,
and their connectivity. The main goal of synthesis are obtaining a gate-level netlist, logic
optimization, inserting a clock-gating cell for power reduction, inserting DFT (Design for
Testability) cell, and maintaining the logical equivalence between RTL and gate-level netlist. The
best output of place and route depend on the synthesis.

Synthesis = translation + optimization + mapping

ifChigh_bits == 2'b10)begin
residue = state_tablefi];

end

else begin

residue = 16'h0000;
ey % Translate

HDL Source
(RTL)

— =

No Timing Info.l:> %
o=

Generic Boolean

Target Technolog

Fig: Steps of Synthesis
Synthesis tools perform the following three steps to meet all the goals.

* Translation: Converts RTL into basic Boolean equation form which is technology-
independent representation.
»= Optimization: Performs two types of optimizations.
o Logic optimization
= Detecting identical cell

Page 69 of 133

= Optimize multiplexer
= Remove unused cell and net
= Reduced word size of the cell

o Design optimization

= Reduced WNS (Worst Negative Slack) and TNS (Total Negative Slack)

= Power and area optimization
= Attempting to meet DRV (Design Rule Violation: Max Fanout, Max

Transition, Max Capacitance)
= Mapping: Technology-independent Boolean logic equations are mapped to technology-
dependent library logic gates based on design constraints, and available gates in the

technology library.

Input and Output files of Physical Design

RTL LIB LEF Constraints
Synthesis
Gate level 5 \
Netlist reports SDC

= Input Files

Technology-Related Files

I. Technology file containing names, physical and electrical characteristics of metal

layers, and design rules (.lef)

II. Timing and functionality information of the standard cell (.lib)

Design Related Files

I. Post Synthesized or Gate Level Netlist (.v)

II. Standard Design Constraints containing all timing and design limitations (.sdc)

= Qutput Files

I. Post-synthesized and optimized gate-level netlist (.v)
II. Standard Design Constraints (.sdc)

Page 70 of 133

Lab Task

In this lab, we will perform synthesis on the RTL of a 4-bit ALU designed and verified in Lab-3
(Example 5).

1. Login to the server in the GUI mode and source the Cadence license file.
[Xlaunch (enable SSH)->putty (load server IP) = login = csh-> source ~/cshrc_q-> nautilus]

2. In the GUI mode of your account open a terminal by executing right click on mouse -
open terminal.

3. Create a directory at your home lab_5
First check you are at the home using the command pwd

[150205105@aust ~]$ pwd

Then create the directory using the mkdir command.

[150205105@aust ~1$ mkdir lab_5/

4. Check whether the directory is created or not using the following command

[150205105@aust ~]S$ Is -ltr

5. Got the directory lab_5 executing the command cd lab_5/

[150205105@aust ~1$ cd lab 5/

6. Copy the necessary files from the root into the lab_5 directory by executing the
following command.

[150205105@aust lab_5 /ab_5]$ source /physicalDesignLab.sh

7. Go to the copied directory synthesis_lab.

[150205105@aust lab_5]$ cd synthesis_lab

Page 71 of 133

8. Make sure the following directories and the files are present in the synthesis_lab

directory using the command tree.

[150205105@aust synthesis_lab]$ tree

[150205105@aust synthesis labl$ tree

-- EDI_ files

|-- lef

| T-- gsclib®45. lef

|-- 1libs

| | -- fast.1lib

| |] -- slow.1lib

| T-- typical.lib

T -- others

“-- capTable

-- dinput TfTiles

T-- alu 4bit.v
-- synthesis cmd. tcl

5 directories,

7 files

9. Open the synthesis_cmd.tcl file using the Vim editor.

[150205105@aust synthesis_lab]$ vi synthesis_cmd.tcl

10. Make sure the following commands are present inside the synthesis_cmd.tcl file.

Commands

Description

set_db init_lib_search_path EDI_files/libs/

Sets the value of a specific attribute. Here we are
setting directory name where all the timing libraries
are located.

set_db library slow.lib

Sets which timing library will be used while mapping

set_db lef_library EDI_files/lef/gsclib045.lef

Sets lef file of a target technology

set_db hdl_search_path input_files

Sets the directory name where RTL is located

read_hdl alu_4bit.v

Loads the design with pre-synthesized RTL

elaborate

Creates a design from Verilog module. Undefined
modules are labeled as unresolved and treated as
blackbox

set_top_module alu_4bit

Sets top module name

current_design alu_4bit

Changes the current directory in the design hierarchy
to the specified design

Page 72 of 133

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

write_hdl > alu_4bit_elaborated.v

Creates a structural netlist using generic/mapped logic

create_clock -name clk -period 10 [get_ports clk]

Creates a clock named “clk” having 10ns period in a
specific port “clk”

set_clock_uncertainty -setup 0.5 [get_clocks clk]

Sets uncertainty value for the clocks while calculating
setup

set_clock_uncertainty -hold 0.5 [get_clocks clk]

Sets uncertainty value for the clocks while calculating
hold

set_max_transition 2 [get_ports clk]

Sets maximum allowable transition time for changing
logic state to 2ns for data path

set_clock_transition -min -fall 0.5 [get_clocks clk]

Sets minimum allowable clock transition time to 0.5ns
for switching logic state from high to low for clock
path

set_clock_transition -min -rise 0.5 [get_clocks clk]

Sets minimum allowable clock transition time to 0.5ns
for switching logic state from low to high for clock
path

set_clock_transition -max -fall 0.5 [get_clocks clk]

Sets maximum allowable clock transition time to 0.5ns
for switching logic state from high to low for clock
path

set_clock_transition -max -rise 0.5 [get_clocks clk]

Sets maximum allowable clock transition time to 0.5ns
for switching logic state from low to high for clock
path

set_clock_groups -name original -group [list
[get_clocks clk]]

Defines groups of specific clocks

set DRIVING_CELL BUFX8

Defines driving cell name which will drive the input
ports of the design

set DRIVE_PIN {Y}

Defines driver pin of the driving cell

set_driving_cell -lib_cell SDRIVING_CELL -pin
$DRIVE_PIN [all_inputs]

Sets driving cell properties for all the input ports

set_max_fanout 10 [current_design]

Sets maximum allowable fanout number to 10

set_load 0.5 [all_outputs]

Sets load capacitance of the output ports of the design

set_operating_conditions slow

Sets operating condition for delay calculation

set_input_delay -max 0.5 [all_inputs]

Synthesis tool assumes the data is launched by a
positive edge triggered flop from the external logic

Page 73 of 133

26

27

28

29

30

31

32

33

34

35

(and the maximum input delay for the setup analysis is
0.5ns)

set_output_delay -max 0.5 [all_outputs]

Synthesis tool assumes the data is captured by a
positive edge triggered flop in the external logic (and
the maximum output delay for the setup analysis is
0.5ns)

remove_assign -buffer_or_inverter BUFX16 -
design [current_design]

Removes assign statement using BUFX16 cell

syn_generic

Performs generic synthesis

write_hdl > alu_4bit_generic.v

Creates a structural netlist using generic logic after
generic synthesis

synthesize -to_mapped

Performs mapping using target timing library

write_hdl > alu_4bit_post_synthesis.v

Creates a structural netlist using mapped logic after
mapping

remove_assigns_without_opt -buffer_or_inverter
BUFX12 -verbose

Removes assign statement using BUFX12 cell

set_remove_assign_options -buffer_or_inverter
BUFX12 -verbose

Sets buffer or inverter cell to remove assign
statements

write -mapped > alu_4bit_mapped.v

Writes mapped netlist for post-synthesis flow

write_sdc > alu_4bit.sdc

Writes constraints file for post-synthesis flow

11. After checking the synthesis_cmd.tcl close the Vim editor by executing Esc = :q

12. Now make sure you are in the synthesis_lab directory. And launch the Genus tool using

the command genus.

[150205105@aust synthesis_lab]$ genus

13. If the Genus tool is successfully launched, the following text will be shown in the terminal.

Copyright 20815 Cadence Design Systems,

Options:

Checking out license: Genus Synthesis

genus@root:> source synthesis_cmd.tcl

Cadence Genus Synthesis Solution, Version 15.18-5819_1, built Nowv 4 20815

Inc. ALl rights reserved worldwide.
Cadence and the Cadence logo are registered trademarks and Genus is a trademark
of Cadence Design Systems, Inc. in the United States and other countries.

Sourcing GUI preferences file shome/Falllg/ 150205105/ .cadence/genus/gui.tcl ...
WARNING: This wersion of the tool is 2426 days old.

Page 74 of 133

14. Now source the synthesis_cmd.tcl file to perform the synthesis of the RTL present in the
input_files directory.

genus@root> source synthesis_cmd.tcl

15. After successfully execution of synthesis_cmd.tcl file, the Genus tool will show that the
SDC file export is finished.

Info . Done incrementally optimizing. [SYNTH-8]
: Done incrementally optimizing 'alu 4bit'.
flow.cputime flow.realtime timing.setup.tns timing.setup.wns snapshot
UM. 0 1 0 ps infinity ps synthesize
Finished SDC export (command execution time mm:ss (real) = 00:00).
genus@design:alu 4bit>

16. Now to show the synthesized output execute the command gui_show.

genus@design:alu_4bit> gui_show

17. The GUI window of the genus synthesis output will be opened. If you click and zoom into
each block of the circuit, you will be able to view the gate interconnections inside the
block.

M Cadence Genus Synthesis Solution 15.10-s019_1 - /home/Fall12/150205022/new/synthesis_lab - [m] >

Took Windows Help cadence

Fie DFT Feoplan Powsr Timing

Hiemchy | HDL B ischematic; | Layout

B G -] | | = v.,| 0
= A MQAQaoonwads T
mm2 [logical unit] A

m3 [control_unit]

El |
alu_abit 1 auto update: 2000

Design is mapped

Page 75 of 133

18. Close the GUI window and exit the Genus tool using the exit command

genus@design:alu_4bit> exit

19. Now you will be in the synthesis_lab directory. Check the files inside the directory using
the Is -Itr command and make sure alu_4bit.sdc and alu_4bit _mapped.v files are present
in the directory which will be used for place and route in the upcoming labs.

Post Lab Task

ok wnNPeE

r-

r.

e T B M e |
[T T |

X X X X

HFHRRPRRRFRRPRWUN P

150205165
150205165
150205165
150205165
150205165
150205165
150205165
150205165
150205165
150205165
150205165

150205105
150205105
150205105
150205105
150205105
150205105
150205105
150205105
150205105
150205105
150205105

[150205105@aust synthesis lab]$ ls -1ltr
total 84
-rwxXr-xr-
drwxr-xr-
drwxr-xr-
drwxr-xr-
-rw-rw-
-rw-rw-
-rw-rw-
-rw-rw-
-rw-rw-
-rw-rw-
-rw-rw-
[150205105@aust synthesis lab]$

1357
4096
4096
4096
7804
8033
2895
5434
5434
36
26573

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

[e2WN =) e B e B o) B o) Bl) B o) I o) B o) I o)

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

38
38
38
40
40
40
40
40
40
41
42

synthesis cmd.tcl
input_files

EDI files

fv

alu 4bit elaborated.v
alu_4bit generic.v
alu 4bit.sdc

alu 4bit post _synthesis.v
alu_4bit mapped.v
genus . cmd

genus. log

Is the testbench module synthesizable?

Why the operating condition of synthesis is slow?
What is Standard Design Constraints (SDC)?

What do LEF and LIB files contain?

List the functions of buffer cells in synthesis.

Check the function of commands report_power, report_gates, report_timing in Genus.

Page 76 of 133

Lab-6: Physical Design Using Encounter Digital

Implementation System (Part 1)
Objective
The main objectives of this lab are:

e Familiarization with Physical Design flow.
e Familiarization with MMMC(Multi-Mode Multi-Corner).
e Familiarization with chip Floorplan.

Introduction

Back-end Design or Physical Design involves the placement of standard cell, macro, and making
physical connections between pins using metal layers(routing) to meet the design power,
performance, and area (PPA) goals. Physical Design flow uses the technical libraries that are
provided by the fabrication houses. These technology files provide information regarding the
type of Silicon wafer used, the standard cells used, and the layout rules. Physical design is
followed by verification after all verifications post-processing is applied where the data is
translated into an industry-standard format called GDSII.

System Design Import & Timing mode setup
Specification
\ 4
v Architectural :
ENTITY test Design Floorplanning
port a: in;

end ENTITY Functional Design

Y and LOglC Design Creating Power Mesh
@)} Circuit Design
4 v Cell Placement and PreCTS Optimization
= Physical Design
L] - + 1
¥ Physical Verification Clock Tree Synthesis and PostCTS opt.
DRC and Signoff
VS *
ERC
¥ Fabrication Routing and post routing opt.
{) Vo
t] Packaging
T and Tfsting Metal and standard cell fill

4? Chip
Physical Verification

ASIC design flow showing the physical design tasks

Page 77 of 133

Physical Design is the process of transforming a circuit description into a physical layout that
describes the position of cells and routes for the interconnections between them. In this stage,
standard cells are placed on a defined floorplan, and route the wire to connect the standard cells.
That is why we call this automatic Place and Route (PnR). Goals for each stage of PnR are given
below.

= Floorplan
I. Define the width and height of the core and die. (core defines the area where core
Logic cells are placed).
II. Define locations of preplaced cells (blocks or macros, placed based on
connectivity)
M. Surround pre-placed cells with Decoupling capacitors.

= Power Plan
l. Power grid network is created to distribute power to each part of the design equally.
II. To connect the power network to every instance by considering IR drops and EM
(Electromigration)
lll. Reduce dynamic and static power dissipation.

= Placement
I. Minimizes congestion and makes the design routable
II. Timing, power, and area optimization
Ill. Reduces cell density, pin density, and congestion hot-spots
IV. Minimal DRV violations

= Clock Tree Synthesis (CTS)
I. Meeting the constraints written in the SDC file
II. Meeting clock tree targets (Min skew and insertion delay (latency))
[Il. Controls buffer/inverter level used in the clock network

= Routing
I. Minimizes total interconnect/wire length
II. Minimizes critical path delay
lll. Completes the connection without increasing total area and minimizes the
number of layer changes
IV. Reduces cross-talk noise
V. Meeting Setup and hold timing margin

Page 78 of 133

Input and Output files of Physical Design

lib LEF Cap Table
Gate Level
sDC l Netlist
Floorplanning
DEF

Input Files

Technology-Related Files

i) Library Exchange Format file (.lef): Contains technology information and an
abstract view of standard cells
ii) Liberty Timing file (.lib): ASCIl representation of timing, power parameter, and

functionality information associated with cells of a particular technology node

Design Related Files

i) Post Synthesized or Gate Level Netlist (.v)
i) Standard Design Constraints containing all timing and design limitations (.sdc)

Output Files
i) Post APR Netlist (APR refers to Automatic Place and Route)
i) DEF (Design Exchange Format)

In this lab, our main task is to understand and initialize the MMMC (multi-mode multi-corner)
and design an efficient floorplan for our synthesized RTL of lab-6. We will perform the rest of the
steps and physical verification in the next lab.

Page 79 of 133

Lab Task
Launching Encounter Tool

1. Log in to the server in the GUI mode and source the Cadence license file.

[Xlaunch (enable SSH)->putty (load server IP) = login = csh=> source ~/cshrc_q-> nautilus]

2. In the GUI mode of your account open a terminal by executing right-click on mouse -
open terminal.

3. First check you are at the home using the command pwd
[150205105@aust ~]$ pwd

Then create the directory using the mkdir command.

[150205105@aust ~1$ mkdir lab_6/

4. Check whether the directory is created or not using the following command

[150205105@aust ~]$ Is -ltr

5. Go to the directory lab_6 by executing the command cd lab_6/

[150205105@aust ~1$ cd lab 6/

6. Copy the directory pnr_lab from the root into the lab_6 directory

[150205105@aust lab_61$ cp /pnr_ lab . -rf

7. Go to the copied directory pnr_Ilab.

[150205105@aust lab_6]$ cd pnr_lab

8. Copy the synthesized netlist alu_4bit_mapped.v and post-synthesis sdc file alu_4bit.sdc
that you created in lab 5 using the following commands.

[150205105@aust pnr_labl$ cp ~/lab_5/synthesis_lab/alu_4bit_mapped.v input_files /

[150205105@aust pnr_lab]$ cp ~/lab_5/synthesis_lab/ alu_4bit.sdc input_files /

Page 80 of 133

9. Make sure the following directories and the files are present in the pnr_lab directory
using the command tree.

[150205105@aust pnr_lab]$ tree

[150205105@aust pnr_labl$ tree

- EDI_files
| -- lef
| T -- gsclib®45.1lef
| -- libs
| | -- fast.1lib
| | -- slow.lib
| T-- typical.lib
T -- others
“-- capTable
-- input_files
| -- alu 4bit.sdc
“-- alu _4bit mapped.v

-~

5 directories, 7 TfTiles

10. Now make sure you are in the pnr_Ilab directory. And launch the Encounter tool using the
command encounter.

[150205105@aust pnr_lab]$ encounter

11. If the encounter tool is successfully launched, the following text will be shown in the
terminal and the black GUI window of the encounter will appear on your screen.

* *
* Cadence Design Systems, Inc. *
* 2655 Seely Avenue *
* San Jose, CA 95134, USA *
* *
* *
* *

B e

@(#)CDS: Encounter v14.20-p004 1 (64bit) 11/05/2014 14:06 (Linux 2.6.18-194.el5)
@(#)CDS: NanoRoute v14.20-p014 NR141101-0648/14 20-UB (database version 2.30, 246.6.1) {superthreading vl.24}
@(#)CDS: CeltIC v14.20-p001_1 (64bit) 10/15/2014 ©3:59:12 (Linux 2.6.18-194.el5)
@(#)CDS: AAE 14.20-p007 (64bit) 11/05/2014 (Linux 2.6.18-194.el5)
@(#)CDS: CTE 14.20-p003_1 (64bit) Oct 27 2014 04:09:59 (Linux 2.6.18-194.el5)
@(#)CDS: CPE v14.20-p003
@(#)CDS: IQRC/TQRC 14.1.2-s5148 (64bit) Mon Sep 29 16:54:36 PDT 2014 (Linux 2.6.18-194.el5)
@(#)CDS: 0A 22.50-pB0O7 Tue Sep 30 00:05:09 2014
@(#)CDS: SGN 10.10-pl24 (19-Aug-2014) (64 bit executable)
@(#)CDS: RCDB 11.5
- Starting "Encounter v14.20-p004 1" on Sun Jul 31 16:40:47 2022 (mem=94.8M) ---
- Running on aust (x86_64 w/Linux 2.6.18-348.el5) ---
This version was compiled on Wed Nov 5 14:06:30 PST 2014.
Set DBUPerIGU to 1000.
Set net toggle Scale Factor to 1.00
Set Shrink Factor to 1.00000

**INFO: MMMC transition support version v31-84

encounter 1>

Page 81 of 133

The following Encounter GUI window will appear.

X Encounter(R) RTL-to-GDSII System 14.2 - /home/Fall18/150205105/lab_6/pnr_lab - — 5] x
Eile Edit View Partion Floorplgn Poyer Place Qpimize Clock Boule Iming Verify Oplions Tools Flowg Help cadence
%G ¥4 L%
i i*P 240 <
B 1 &Ly x . B s anline helg B

D instance
instance

Area |0 Cell
Black Box
E Module

B Cell
 Blockage
B Row

£ Floorpian

& Congestion
 Multipie Color
B Miscellaneous
E Wire&Via
Metal 0

ia 01

FEYEA

&8

3

g
KkRkhkkRkkRkRRKRRKkkkkkkikkkkitkkhkk Rk kR KRk KR| <
kRikkkhhkkkkkkrRkkRkRrRkkkikkkkRkrRRRERRRERRERRERKREE

78]
[

Zlick to select single object. ShiftsClick o defselect multiple objects |.a]fseinumo fo.165, 0.054 [Net in Memary

Design Import & Timing mode setup

12. Now from the Encounter GUI window, launch the Design Import window by executing
File > Import Design

X Encounter(R) RTL-to-GDSII System 14.2 - /home/Fall18/150205105/
Ln:ll View Parition Floorplan Fower Place Optmize Clock Roule Timing Verfy Options Tools Flows Help
\mport Design Bt =P 24 0y Gl

- Lo =y L G

b_6/pnr_lab -

tore

De
X Design Import - [m] x
Create DA Librar
Hetlist:
Import AL -
D ® Verilog

g Top Cell:w Auto Assign & By User
> O
»
Ext Technology/Physical Libraries:
. OB
Reference Libraries J
ract Vi
Layout View
LEF Files
Foorplan

1O Assignment File

o

Power

o

Analysis Configuration

MMMC View Definifion File

Create Analysis Configuration .

m Save Load Cancel Help

Page 82 of 133

13. In the Design import window, select the Verilog option under the Netlist section and then
click on the three dots (...) button for importing the synthesized netlist file to the
database.

X Design Import - O s

Hetlist:
e Verilog

Files: _I

Top Cell: Auto Assign & By User.

OA
Librar,

Technology/Physical Libraries:
. 04
Reference Libraries:

Abstract View Names:
Layout View Mames:

_ LEF Files _|

Floorplan
10 Assignment File: k I

Power

Power Mets:
Ground Nets:

CPF File: k I
Analysis Configuration

MMMC View Definition File: k I
Create Analysis Configuration ...

m Save... Load... Cancel Help
e —

14. Now the Netlist File window will appear, click on the double arrow button (>>).

M Metlist Files ><

Metlist File: I ==

Hetlist Fles:

Delete

Close
——

Page 83 of 133

15. In the newly appeared Netlist Files window, select the synthesized netlist file
alu_4bit_mapped.v from the input_files directory. Then click on the Close button.

X Metlist Files >
Metlist File: it files/alu_abit_mapped.v (ELP << Hetlist Selection:
Hetlist Files:

F=1118/1502051 05/1ab_G/pnr_labvinput_files B (%

input_filessalu_dhbit_mapped.v = diit =
B alu_dhbit_map

Filters: |Metlist Files (*.v") B

Dl ete
——

Close
w155

16. If the netlist importing is successful, you will be in the Design Import window again. Now
to define the Top Cell name select the By User option and provide the cell name alu_4bit
in the blank field as shown in the following figure.

X Design Import — O >
Netlist:
& Yerilog
Files: input_files/alu_4hit_mapped.v _I
Top Cell:_ Auto Assign e By User: alu_dhit|
- OA
Library:‘
Cell:|
Wien:

Technology/Physical Libraries:
- 0A

Reference Libraries: |

Abstract Wiew Names:

Layaout Wiew Mames:

_ LEF Files _|

Floorplan

1D Assignment File: = |

Powrer

Paower Mets:
Ground Mets:

CPF File: E |
Analysis Configuration

FMMC View Definition File: = |
Create Analysis Configuration ...

m Save._ Laad... Cancel Help
——— e ——— ——

Page 84 of 133

17. For adding lef files to the database, select the LEF Files option under the Technology/Physical
Libraries section of the Design Import window. Click on the three dots (...) button beside
the LEF Files option. Then on the appeared LEF Files window click on the arrow (>>) button.

& Design Import — O *
Hetlist:
& Verilog
Files: input_files/alu_dbil_mapped.v
Top Cell:e Auto Assigh & By User: alu_4hit X LEF Files *
o oA =)
Library:{ LEF Fils: =
Cell| . —
View,| LEF Files:

Technology/Physical Libraries:
o8

Reference Libraries:

Ahstract View Names:

Layout iiew Mames:
E=red s : [
Foorplan
‘ 13 Aszsignment File Ll ‘
Power

Power Mets:
Ground Mets:
CPF File: =,
Analysis Configuration

MRARC View Definition File: =,
Create Analysis Configuration ...

[Delete

Close

Save.. Load... Cancel Help
e

18. In the LEF Files window find and select the lef file gsclib045.lef from the EDI_file/lef
directory and then click on the Close button.

X LEF Files W
LEF File: EDI_files/ef/gsclin045 lef << LEF Selection:
e 51ansnznmo5r|ab_5fpm_labeDl_mesnef- %

EDI_files/efigsclibDd 5 lef s B gsclib0ds lef |

Filters: LEF Files (".lef) B

Page 85 of 133

19. Now, on the Power section of the Design Import window, write Power Nets name as VDD
and Ground Nets name as VSS as shown in the below figure. After that click on the Create
Analysis Configuration option for creating the MMMC file.

M Design Import — O >
Hetlist:
= “erilog
Files: input_filessalu_4hit_mapped.v _I
Top Cell:_ Auto Assign = By User: alu_d4hbit
el
Likrary:
Cell:
Wi

TechnologyfPhysical Librares:
oA
Reference Libraries:

Ahstract View Mames:

Layout View Mames:

= LEF Files EDI_filesfleffgsclibld5 lef _I
Foorplan

1D Assignment File: l_I
Powrer

Fower Mets: wWDD
2 N Ground Mets: WSS
CFF File: =1

Analysis Configuration

FARARAC Yiewr Definition File: = I
3 l Create analysis Configuration .. I
m Save._ . Load... Cancel Help

20. The following blank MMMC Browser window will appear. We will set MMMC objects and
will create appropriate analysis views for our physical design.

| MMMC Browser — O >

Analysis Wiew List rARMRC Ohjects wWizard Help
Bl Analysis Wiews El- Library Sets
Setup Analysis Views -RC Corners

Hold Aanalysis Wiews COP Conds This wizard will assist you in
-Delay Corners specifying the necessary informatiaon

- Constraint Modes to configure the system for RC
extraction, delay calculation, and
timing analysis.

It wyou have all the necessary data
available, it is recommended that
you configure the system as
completely as possible for all steps
of the implementation flow - through
signoff.

If not, you can always update the
configuration, if necessary, as you
proceed through the flow.

If you are comfortable using the
ARRAC Browser, you can use the
Wizard Off button to remove the
help dialog, and proceed at your
oW pace.

For additional assistance with
design import, press the Mext buttan

Eries Il ezt
LA N S
Load... Lelete Beset Ereferences... wizard Of Close Help

Page 86 of 133

Library Sets

We will create two Library Sets using slow and fast timing library files as shown in Table 1.

Table-1
Name Timing library file Directory
max_timing EDI_files/libs/slow.lib
min_timing EDI_files/libs/fast.lib

21. To create a library sets, double click on the Library Sets option of the MMMC Browser to
launch the Add Library Set window.
X MMMC Browser — O prd

Analysis View List MMMMC Objects Wizard Help
E- Analysis Views Library Sets

M- Setup Analysis Views - RC Comers L ; .)
E-Hold Analysis Views OP Conds This wizard will assist you in
’ . Delay Comers specifying the necessary information
#- Constraint Modes to configure the system for RC

extraction, delay calculation, and
timing analysis.

22. In the Add Library Set window, write max_timing in the name field and click on the Add

button.
! X Add Library Set — O X

hame: max_timing I
iming Library Files Sl Library Files

[0K] Apply Close Help
23. The Timing Library Files window will appear. Click on the double arrow (>>) button and
select the slow.lib from the EDI_files/libs directory. Then click on the Close button.

X Timing Library Files >

Timing Library File: |_files/libs/slow lib () << Timing Library Selection:

Timing Library Files: 9681502051 05Aab_g/pnr_laweD|_flesnios [l '8

HEDI_files/libs/slow I|L'.|—=_ | % fastlib
o Typical

Filters: |Timing Library Files (*lib) B

Page 87 of 133

24. Now in the Add Library Set window select the OK button. A library set will be created
named max_timing which contains EDI_files/libs/slow.lib

X Add Library Set

Name: max_timing

Timing Library Files

IEDI_ﬁIesﬂibsfslow.lib I

O X
S| Library Files
CAdd. Add...
[Delete [elete
_—
apply Close _Help_

25. Follow steps 21-24 to create the min_timing library set by selecting the fast.lib.

26. After successfully creating two libraries the MMMC browser will look like the below

figure.

M MMMC Browser

Analysis View List

B Analysis Views
B Setup Analysis Views
Hold Analysis Views

ave&(ose...

- max_timing
Bl Timing
- EDI_filesdibs/slow.lib
| B-SI
B min_timing
El- Timing
- EDI_files/ibs/fast.lib
i &SI
- RC Cormers
OP Conds
- Delay Cormners
Constraint Modes

MMMC Objects Wizard Help

This wizard will assist you in
specifying the necessary information
to configure the system for RC
extraction, delay calculation, and
timing analysis.

It you have all the necessary data
available, it is recommended that
you configure the system as
completely as possible for all steps
of the implementation flow - through
signoff,

If not, you can always update the
configuration, if necessary, as you
proceed through the flow.

If you are c%!oﬂable using the
MMMC Browser, you can use the
Wizard Off button to remove the
help dialog, and proceed at your
own pace.

For additional assistance with
design import, press the Next button

Pres Next
Load... Delete Reset Preferences... Wizard Off Close Help

Page 88 of 133

RC Corners

Now, we will create an RC Corner using the Cap Table file as shown in Table 2.

Table-2
Name Cap Table Temperature
rc_typical EDI_files/others/capTable 25

27. To create an RC corner, double click on the RC Corners option of the MMMC Browser to
launch the Add RC Corner window.

(}(MMMC Browser

Analysis View List

Wizard Help

[Analysis Views
- Setup Analysis Yiews
H- Hold Analysis Views

Egus

MMMC Ohjects
[-RC Comers

& Delay Corners
(- Constraint Modes

Thizs wizard will assist you in
specifying the necessary information
to configure the system for RC
extraction, delay calculation, and
timing analysis.

28. In the Add RC Corner window, write rc_typical in the Name field and 25 in the
Temperature field and select the Cap Table from the location EDI_files/others/capTable.
After that click on the OK button. If the capTable file is not found in the mentioned
location select the File of type as All Files(*) from the Cap Table window.

1 Mame: re_typical

I Temperaure: 25

FreRoute Resistance scale Factor:

1.0

PreRoute Cap Scale Factor:

1.0

PreRoute Clock Resistance Scale Factar:

0

PreRoute Clock Cap Scale Factor

0

PostRoute Resistance Scale Factor:

1.0

PostRoute Cap Scale Factor:

1.0

PostRoute Xcap Scale Factor:

1.0

PastRoute Clock Resistance Scale Factor:

n.o

PastRoute Clock Cap Scale Factor:
5 BAC Technalogy Fle

@ | ey D

0

o |
N

}(Cap Table

X

Loak in: 9 fhome/Fall181502051 05/ab_Bdpnr_lab/EDI_files/others n Q © B @

E Computer [Name
B cic [capTable
(5 15020810

~ |Size | Type Date Modified |
710 KE File B Moy 23075

4

;r Ll I_
File nate
Files of type: &l Files () 3 n Cancel

)

Page 89 of 133

29. After successfully creating the RC Corner the MMMC browser will look like the below

figure.

x MMPMC Browser

Analysis View List

MMMC Objects

Wizard Help

SavekOdose...

Delay Corners

B Analysis Views
B Setup Analysis Views
ME-Hold Analysis Views

_ Load..

B Library Sets
maw_timing
- min_timin

B rc_typical

|- Cap Table ; EDI_files/othersycapT
—=T:25
i~ PreRoute Res : 1.0
i~ PreRoute Cap : 1.0
|- PraRoute Clkras - 0.0
\- PreRoute Clkcap : 0.0
- PostRoute Res © 1.0
i~ PostRoute Cap : 1.0
i~ PostRoute Xcap - 1.0
(- PostRoute Clkres : 0.0
i PostRoute Clkcap : 0.0
-G Tech File

B OP Conds

- Delay Comers

B Constraint Modes

|_:. LIl -

. Reset __ Ereferences... Wizard Off Cloge Help

—

This wizard will assis! you in
specifying the necessary information
to configure the system for RC
exiraction, delay calculation, and
timing analysis

It you have all the necessary data
avallable, it is recommended that
you configure the system as
completely as possible for all steps
of the implementation flow - through
signaff.

If not, you can ahvays update the
configuration, if necessary, as you
proceed through the flo

If you are comfortable using the
MMM Browser, you can use the
‘Wizard Off bution fo remove the
help dialog, and proceed at your
AT PACE

For additional assistance with
dasngn Import, press the Mext bution

Now, we will create two different Delay Corners using the max_timing and min_timing library
sets and the rc_typical RC Corner as shown in Table-3.

Table-3
Name Type RC Corner Library Set
max_delay Single Bc/Wc rc_typical max_timing
min_delay Single Bc/Wc rc_typical min_timing

30. To create a delay corner, double click on the Delay Corners option of the MMMC Browser
to launch the Add Delay Corner window.

X MMMC Browser

Analysis View List

MMMC Objects

Wizard Help

E- Analysis Views

B- Setup Analysis Views

B- Hold Analysis Views

B Library Sets
#-RC Corners

This wizard will assist you in
specifying the necessary information
to configure the system for RC
extraction, delay calculation, and
timing analysis.

Page 90 of 133

31. In the Add Delay Corner window, write max_delay in the name field, select the type
Single Bc/Wc, choose rc_typical from the RC Corner option, and max_timing from the
Library Set option. Then, click on the OK button.

X Add Delay Corner — O >

Type

— On Chip Wariation §® Single/BcWo

Attributes

default

RC Corner:rc_typical
ILibrary Set:max_timing
OpCond L

OpCond:

IrDrop File:

EaHy

——— Library Set:
WEEEEY || | opcond Lib:
OpCond:|

IrDrop File:

Late
Library Set:
CpCand Lib:
OpCDnd:‘
IrDrop File:

Mot | |"sbb || oo

L_OK I _apply Close _Help

32. Follow steps 27-28 and create the min_delay delay corner by selecting the min_timing
from Library Set and rc_typical from RC Corner.

33. After successfully creating all two delay corners, the MMMC Browser will look like the
below figure.

M MMMC Browser — [m] b4
Analysis View List MMMC Objects Wizard Help
B Analysis Views =- Library Sets
B Setup Analysis Views = max_timing .) . . .
B Hold &nalysis Wiews = Timing This wizard will assist you in
EDi_filesAibsssiow lib specifying the necessary information
& 51 to configure the system for AC
= ""'""TI_‘_"'"_'"Q extraction, delay calculation, and
B3 Timin timing analysis.
EDI_filesAibs/astlib .
@ 5
B RC Cor;ers It you have all the necessary data
B re_typical available, it is recommended that
E- OP Conds you configure the system as
Delay Comers completely as possible for all steps
B max_delay of the implementation flow - through
B Library Set : mas_timing signofl
Dpocond Libramy i not, e
Opcond.; not, you can always updale the
B RC Comer : rc_typical configuration, if necessary, as you
Irdrop File proceesd through the flow,
& Power Domain List
= min_delay - If you are comfortable using the
- Library Set : min_timing MKMC Browser, you can use the
el Wizard OfY bufton 1o remove e
@ RC Cormer : rc_typlcal help dialog, and proceed at your

— Irdrop File - own pace.
E- Power Domain List
E- Constraint Modes

For additional assistance with
design impon, press the Next button

Mert

SavesClose... Load... Reset Preferences... Wizard Off Close Help

Page 91 of 133

Constraint Mode

In this part, a constraint mode will be created from the post synthesis constraint file(SDC file)
using the Constraint Mode option as shown in Table-4.

Table-4
Name SDC constraint files
fuctional_sdc Input_files/alu_4bit.sdc

34. Double click on the Constraint Modes option of the MMMC Browser to open Add
Constraint Mode window.

X MMMC Browser - O x
Analysis View List MMMC Objects Wizard Help
B Analysis Views Library Sets
@- Setup Analysis Views B RC Corners) . . .)
& HDIdF Analysis Views - OP Conds This wizard will assist you in
’ 5 Delay Comers specifying the necessary information
& Constraint Modes to configure the system for RC
extraction, delay calculation, and
timing analysis.

35. In the Add Constraint Mode window, write fuctional_sdc on the name field and click on
the Add button.

X Add Constraint Mode — O pad
MName: functional_sdc|
e DG COnS At e ILM Constraint Files

Add... Add,..

L _OK _apply _Close __Help

Page 92 of 133

36. Now the SDC Constraints Files window will appear

x SDC Constraint Files

SDC Constraint File |
SBDC Constraint Files:

i

Close

. Click on the double arrow button (>>)

37. Select the alu_4bit.sdc from the input_files directory. After that click on the Close

button.

X sDC Constraint Files

SDC Constraint File: flessalu_dbitsdc m =

=

SDC Constraint Files:

|
input_files/alu_4bit.sdc ||

[Delete

SDC Constraint Selection:

EllnEV15IJZEI51IJEf\ahiﬁ.-’pnrﬁlah.ﬂ‘lnpulﬁﬂlesn =
alu_dbit_mapped.y

Filters: | SDC Constraint Files (" sdc™) n

Close
Sl

38. Then click OK on Add Constraint Mode window.

M fdd Constraint Mode - O B
kame: functiona_sdc

SDC Constraint Files ILM Constraint Files

input_filesfalu_4hitsdc

A A
—
Delete Delete
@ | ey Close Help

Page 93 of 133

39. After successfully creating the constraint mode, a constraint mode named functional_sdc
is created in the MMMC Browser.

x MM Browser

Analysis View List

MMMC Objects

wizard Help

B Analysis Views
B-Sefup Analysis Views
E-Hold Analysis Views

Save&Cose...

_ Load..

B Library Sets
B max_iming
- Timing
EDI_filesdlibs slowlib
B3l
B min_timing
B Timing
EDI_files/libsfAast lib
-5l
B RC Comers
B re_typical
B-OF Conds
=~ Delay Corners
B max_delay
Bl Library Set : max_timing
Cpcond Librarny :
Cpcond
B RC Comer ; rc_typical
Irdrop File
[Poweer Domaln List
B min_delay
B Library Setl: min_liming
QOpcond Librany
Cpcond
B ARC Comer : rc_typical
Irdrop File
H- Power Domain List
B functiona_sdc
El- Sdc Files
I - inpui_files/alu_4dbit sde
- lim Sdc Files

. Beset

Ereferences...

This wizard will assist you in
specifying the necessany information
to configure the system for RC
exiraction, delay calculation, and
timing analysis

It you have all the necessary data
avallable, it is recommended that
you configure the system as
completely as possible for all steps
of the implementation flow - through
slgnoff.

If not, wou can ahways update the
configuration, if necessary, as you
proceed through the flow

If you are comfortable using the
MMMC Browser, you can use the
Wizard OFf bution to remove the
help dialog, and proceead at your
W pAcE

For additional assistance with
GHSIQH Import, press the MNext bution

—

‘Wizard O Close Help

Analysis Views

We will create two different Analysis Views using the previously created max_delay and
min_delay delay corners and constraint mode fuctional_sdc as shown in Table-5.

Table-5
Name Constraint Mode Delay Corner
func_slow fuctional_sdc max_delay
func_fast fuctional_sdc min_delay

40. To create an analysis view double, click on the Analysis Views option of the MMMC
Browser to launch the Add Analysis View window.

X MMMC Browser

Analysis View List

MMM Ohbjects

Wizard Help

[H- Analysis Views

EERET=) O Y (P A B =0
B- Hold Analysis Views

B Library Sets

-RC Comers

OP Conds

- Delay Corners

- Constraint Modes

)

This wizard will assist you in
specifying the necessary information
to configure the system for RC
extraction, delay calculation, and
timing analysis.

Page 94 of 133

41.In the Add Analysis View window write func_slow in the name field, select
functional_sdc from the Constraint Mode option, max_delay from the Delay Corner
option, and after that press Ok.

X Add Analysis View — O x

Name: func_slow
Constraint Mode: functional_sdc [~ |
Delay Corner:max_delay B

@I cepy Close Help

42. Follow steps 35-36 and create the func_fast analysis view by selecting the functional_sdc
from the Constraint Mode option and max_delay from the Delay Corner option.

M add Analysis View — O P
Mame: func_fast
Constraint kode: functional_sdc n
Delay Corner: min_delay [~ |
DK Apply Close Help

Setup and Hold Analysis View

We will specify setup and hold analysis views using the func_slow and func_fast analysis
views created in the previous steps.

43. To specify the setup analysis view, double click on the Setup Analysis View option on the
MMMC Browser to launch the Add Setup Analysis.

X MMMC Browser — O ®
Analysis View List MMMC Objects Wizard Help
EAnalysis Wiswes Library Sets
E- Setup Analysis Views | BE-RC Corners - . . .
+- Hold Analysis Yiews B OF Conds This wizard will assist you in
’ @ Delay Comers specifying the necessary information
B Constraint Modes to configure the system for RC

extraction, delay calculation, and
timing analysis.

44. In the Add Setup Analysis View window select the func_slow from the Analysis View
and press Ok.

X Add Setup Analysis ... — O X

Analysis View: func_slow [~]

m _ Apply Close . Help

Page 95 of 133

45. Following steps 38-39 and specify the Hold Analysis View option by selecting the

func_fast Analysis View.

X Add Hold Analysis V... — O x

I Analysis View:]’unc_fast

@I ey _Cose _tiep

46. After adding all analysis views, make sure your MMMC Browser looks like the below
figure, and then click on the Save&Close button.

M MPMMC Browser

Analysis Wiew List

PAMAC Ohjects

B Analysis Wiews
Bl func_slow

i B Constraint kode - functiona_sdc
- Sdc Files

H input_filesfalu_4hit sdc
Im Sdc Files
B Delay Corner @ max_delay
E- Library Set : max_timing

Opcond Likrary :
-~ Opocond ¢
- RC Corner : ro_typical
Ircrop File :
B~ Fower Domain List
E- func_fast

B+ Constraint MMode : functiona_sdc

: Sdc Files
lim Sdc Files
- Delay Caorner : min_delay
B~ Library Set: min_timing
- Dpocond Library @

Opcand :
- RC Corner @ ro_typical
-~ Irdrop File :
B Power Domain List
B Setup Analysis Views

: U 510

Load

=- Library Sets

El- max_timing

i B Timing
EDI_filesdlibssdslow.lib

B+ min_timing

= Timing

EDI_filesflibsifastlib

=1l
E-RC Corners
B ro_typical
Cap Tahle : EDI_fllessothersicapTahle
T:25

- PreRoute Res :
- PreRoute Cap
FPreRoute Clkres : 0.0
FreRoute Clkcap : 0.0

- PostRoute Res - 1.0

- PostRoute Cap - 1.0

- PostRoute Xcap : 1.0
FostRoute Clkres @ 0.0
FostRoute Clkcap : 0.0

- ¥ Tech File

EH- OF Conds

=-Delay Carners

£ mas_delay

- Library Set : max_timing
-~ Opoond Library -

COpcond
E-RC Corner : ro_typical
Irdrop File
i E-Power Domain List
- min_delay
- Library Set : min_timing
Cpcond Library ©
- Dpoond :
H-RC Corner : ro_typical
Irdrap File :

- Poweer Domain List
= Constraint MModes
El- functiona_sdc
=~ Sdc Files
input_filesralu_dhit.sdc
llm Sdc Files

Resei Preferences

Wizard Help

This wizard will assist vou in
specifying the necessary infarmation
to configure the system for RC
extraction, delay calculation, and
timing analysis.

It you hawve all the necessary data
available, it is recommended that
wou configure the swstem as
completely as possible for all steps
of the implementation flow - through
signoff.

If not, wou can alvays update the
configuration, if necessary, as you
proceed through the flow:

If wou are comfortable using the
FAFARAC Broweser, you can use the
Wizard Off button to remove the
help dialog, and proceed at your
oW pacE.

For additional assistance with
design import, press the Mext bution

Rles, MNext
s —l

Wizard Off Clozse Help

47. The Save MMMC Browser View Definition File window will appear. To save all the steps
of the MMMC browser provide a file name and click on the Save button.[Here, we used

the name Default.view]

X Save MMMC View Definition File =
Laook in: 5 /homedF all1 8/1 502051 05/ak_B/pnr_lak B L= = |
[&L Computer Tame . |Size |Twpe |Date Modified |
= cic B EDI_files Folder FoAug 2347003
= 15020510 |FF floorplan.enc.dat Falder T oaug 244201
B inputs_from_synthesis Folder Fosug 2. 3572

B e

[

File name:

Files of type: hMRMC Wiew Definition File (" wiew™)

[=]

n Cancel

Page 96 of 133

48. Now, make sure your final Design Import window looks like the following figure and then
click on the OK button.

53(Design Import — | =
Hetlist:
= “Yerilog
Files: input_filesfalu_4hbit_mapped.v
Top Cell:_ Auto Assign e By User: alu_dhbit

[

Technology/Physical Libraries:
(o)

Foorplan

Ig LEF Files ECI_filessleffgsclib045. et I
1=l

10 Assignment File:

Powrer

Power Mets: wDD
Ground Mets: WSS

CFF File: ._|

Analysis Configuration

RARARC View Definition File: Default view &= I
Lereate Analysis Configuration ..

[ok] _ Save.. _ Load.. _Cancel __Help

49. An Encounter window will appear on your screen. The window has multiple rows like the
following figure which ensure that the database has been created perfectly and ready for

M Encounter(R) RTL-ta-GDSI| System 14.2 - /home/Fall18/1 50205105/ lab_6/pnr_lab - alu_ahit (=]

Elle Edil Wiew Partition Flo \ Power Elace Optimize Clock Beute Timing Verrne Options Tools Flows Help cadence
[el | W |(EEER i W T W S s B eg B =y sia 4 0E =8 & “agd [ZT »
Iy) ke (0 Bl L By [y e = oy ql, B | B &% [ElE]|onine neip - |
Layer Control &) <

Al s v 5

g

o

»

L

o

o o

o

»

- -

o \a

w

¥

v

rfr

rjr

rfr

rfr

VELT VH

KRKERRKKRKCKRRKRKKRKKRKEK
199999999 999999999484¢

Mz

Click to seiect singls okject, Shit+Click to de/selact multiple objact |_@ | [seirum:n [¢1.0a8, -0.8a0 T,

Page 97 of 133

50. For floorplanning, execute Floorplan - Specify Floorplan.

o

Stuctured Data FPath...

Automatic Floorplan >
Resize Floorplan...

Eelative Floorplan >
Fow »

[Floorplan Toolbox...
Edit Flaorplan 3
Snap Floorplan... Crl+M
Check Floarplan...
Clear Floorplan...

Instance Group >
Generate Regrouped Metlist...

Generate Floorplan »

51. Now in the Specify Floorplan window, set Core Utilization 0.4 and select the option Core
to 10 Boundary from the Core Margin By section and put 10 to all the four blank spaces
(Core to Left, Core to Top, Core to Right, Core to Bottom). No need to change the rest of
the value.

X Specify Floarplan — O *

Basic | Advanced

Design Dimensions

Specify By: & Size _ DieAQ/Core Coordinates

& Core Size by: & Aspect Ratio: i :
Ig Core Utilization: 04 I

. el Utilization: 04

. Dimension: Width: 26.035

Height: 17.1

. Die Size by: Width: 46,035
H P-lad b e

Core Marging by e Core to |0 Boundary
 Core to Die Boundary
Core to Left: 10.0 Core to Top: 10.0
Core to Right: 10.0 Caore to Bottom: 10
Die Size Calculation Use: _ Max 10 Height & Min [0 Height

Floorplan Origin at: & Lower Left Corner _ Center
Lnit: kAicran

Page 98 of 133

52. After successfully specifying all the values, the following floorplan will appear on the
encounter window.

f>< Encounter(R) RTL-to-GDSI Systermn 14.2 - fhome/Fall18/150205105/1ab_6/pnr_lab/floorplan.enc.dat - alu_4bit —] =

File Edit ¥iew Parition Floorplan Power Place Optimize Clock Route Timing Verify Options Tools Flows Help cadence

= d | @ (EEd A AV QA Q AR RO e RN IF
“%” I % % 1 E& k‘ e = 'ﬂ& 114}‘% |§:,3> |Dn|inehe|p n

| Layer Control

Al Colors

B Instance
Instance
___ Elock
Std. Cell
Cover Cell
Physical Cell
10 Cell
Area 1O Cell
Elack Box
Module
Het
Cell
Blockage
Rows
Floorplan
Partition
Bump
Power
GHd
Track
Congestion
Multiple Color
Miscellaneous
= Wire&via
Paly ity
Cont(vo1)
hetall (k1)
Wial (W1z)
retal2(M2)
Wiaz(Wa3)
rAetal Sk)
Wiad(Wvad)
Metald (k)
Wiad (WaT)
rAetalSIME)
Wias (W56
rAetal GikAR)
' Wik ET)
*** Metal 7 (M7
Wiad (W FE)
rAetal B E)
Wiaa (W aED)
rAetal S(kAS)

~
[[a][seinumn [-3.606, -4.059) [In Memary

[[o e

I

B
RN

=]
W
I~
v
»
v
)
~
o
v
|
o~
»
»
™
™
»
™~
~
»
»
™
™
o
|

1
'
>
I~
»
»
)
|
2
»~
o
~
~
~
™~
~
|

1]

e T e e R

E]

53. Now save the design as an encounter database file using the following command in the
encounter terminal.

‘ encounter 1> saveDesign floorplan.enc

Post Lab Task

What are the functions of the MMMC browser?

What does Cap Table contain?

What are the core area and die area?

What is the concept of rows in the floor plan?

What is constraint mode and how does it control the whole ASIC design?
What are the PVT corner and RC corner?

How is utilization calculated?

Why do we check the setup in the slow corner and hold in the fast corner?
Check all the options of Specify Floorplan window.

OWO~NoUhWN P

Page 99 of 133

Lab-7A: Physical Design Using Encounter Digital

Implementation System (Part 2)
Objective
The main objectives of this lab are:

e Familiarization with power mesh creation.
e Familiarization with standard cell placement techniques.

Lab Task

In the last lab, we prepared the design import settings and created a floorplan for our design. In
this lab, we will perform the rest of the stages of PnR for completing our physical design

1. Login to the server in GUI mode and source the Cadence license file.
[Xlaunch (enable SSH)->putty (load server IP) = login = csh-> source ~/cshrc_g-> nautilus]

2. In the GUI mode of your account open a terminal by executing right-click on mouse =
open terminal.

3. First check you are at the home using the command pwd

[150205105@aust ~]$ pwd

4. Go to the directory lab_6 executing the command cd lab_6/
[150205105@aust ~1$ cd lab_6/

5. Go to the directory pnr_lab where you have done lab_6 experiment and saved your
design up to the floorplan
[150205105@aust lab_6]$ cd pnr_lab

6. Make sure that the floorplan.enc encounter database are present in the pnr_lab
directory using the command Is -Itr
[150205105@aust pnr_lab]$ /s -ltr

7. Now make sure you are in the pnr_lab directory. And launch the Encounter tool using
the command encounter.
[150205105@aust pnr_lab]$ encounter

Page 100 of 133

8. If the encounter tool is successfully launched, the following text will be shown in the

terminal.
w +
* Cadence Design Systems, Inc. *
* 2655 Seely Avenue *
* San Jose, CA 95134, usa *
* *
* *
S S A S A A S K G K A KK G S SR KoK SR S R S SR S R S AR o A K S R K KSR SR S R S SR A K o

Running on aust (x86_64 w/Linux 2.6.18-348.el15)
This wversion was compiled on Wed Nov 5 14:06:30 PST 2014.
Set DBUPerIGU to 1000

Set net toggle Scale Factor to 1.00

Set Shrink Factor to 1.00000

*%=INFO: MMMC transition support version v31-84

encounter 1>

{superthreading

@(#)CDS: Encounter v14.20-p004 1 (64bit) 11/05/2014 14:06 (Linux 2.6.18-194.el5)
@(#)CDS: NanoRoute v14.20-p01l4 NR141101-0648/14 20-UB (database wversion 2.30, 246.6.1)
@(#)CDS: CeltIC v14.20-p001l_1 (64bit) 10/15/2014 ©03:59:12 (Linux 2.6.18-194.el5)
@(#)CDS: AAE 14.20-p007 (64bit) 11/05/2014 (Linux 2.6.18-194.el5)

@(#)CDS: CTE 14.20-pBO3_1 (64bit) Oct 27 2014 04:09:59 (Linux 2.6.18-194.el5)

@(#)CDS: CPE v14.20-p0603

@(#)CDS: IQRC/TQRC 14.1.2-s5148 (64bit) Mon Sep 29 16:54:36 PDT 2014 (Linux 2.6.18-194.el5)
@(#)CDS: OA 22.50-pBO7 Tue Sep 30 00:05:09 2014

@(#)CDS: SGN 10.10-pl24 (19-Aug-2014) (64 bit executable)

@(#)CDS: RCDB 11.5

--- Starting "Encounter v14.20-p004_ 1" on Sun Jul 31 16:40:47 2022 (mem=94.8M) ---

vl.

9. Now from the encounter terminal, open floorplan.enc database using the following

command.

encounter 1> source floorplan.enc

The following floorplan window will appear on your encounter window.

|
de L W HE [|5 £

1 B b W = & 14 Bn

X Encounter(R) RTL-to-GDSIl Systern 14.2 - fhome/Fall18/150205105/1ab_6/pnr_lab/floorplan.enc.dat - alu_4bit - O >

File Edit Yiew Partition Floorplan Power PFlace Optimize Clock Route Timing Verify Options Tools Flows Help cadence
= x 3 ¥ = & = - - <

== © (ERRE *# F4 ¥E | Q @ Bl @ @& s o 5 e S S | -

|[anline help [~]

Layer Control

Al Colors

Block

1o Cell

Het
Cell

= Instance
Instance

Std. Cell
Cover Cell
Fhysical Cell

Area |0 Cell
Elack Box
EH Module

Blockage
Rows
Floorplan
Partition
Bump
Power
Grid
Track
Congestion
Multiple Color
Miscellaneous
E wared&via
Poly (0}
Cont{voT})
tetall (A1)
Wial (w12}
Metal 2 (ra2)
WiaZ (W23
tetal3(hA3)
Wiad (W Ea)
MAEtald (hAS)
Wiad (Wa5)
MetalS(hS)
Wias(WSE])
Metal6(hAG)
WiaB(WET)
Metal 7 (A7)
ViaT (W E)
Metal(hAE)
WiaS(W8a)
MEtalS(rAS)

IS] =

=
W
o
)
™
™~
~
|
=
|)
|~
~

d
S
]
)
]
RS

e

KRR KRR KRR KRR KRR KRR
T

k=

"~
[[e]fseimumn [-a.606, 4.059)

|In remory

Page 101 of 133

Power Mesh

After restoring floorplan.enc database to the encounter tool, now the next step is power mesh
creation where we will add Ring, Stripes, and SRoute to the design.

10. Now to add ring to the design, select Add Ring option by executing Power - Power

Planning - Add Ring.

Opt

Fyws o Tools Flow

imize Clock Route Timing “erify Options

Bower Analysis
Bail &nalysis
Report

Al R0 &9 s o B
B &

Edit Fower “ia...
Create Fowern'Ground Fin...

PG Cut'Bepair...

11. In the appeared Add Ring window, select the Basic tab and click on the three dots (...)
button beside the Net(s) field.

X Add Rings - O X
Basic Advanced Via Generation
Net(s): g
Ring Type
& Core ring(s) contouring
& Around core boundary Along YO boundary
— Exclude selected objects
- Block ring(s) around
Each reef
elected power domain/fer
Each selected block and/or group of I
Clusters of selected blocks and/or groups of core rows
-~ User defined coordinates: \ouse ;
) ire ring Black ring
Ring Configuration
Top Bottom: Left: Right:
Layer: Metall H » | Metall H » Metalz v » MetalZ V »
Width: 0.07 0.07 0.07 0.07
Spacing: 0.07 0.07 0.07 0.07 Update
Offset: _ Center in channel & Specify
0.165 0.165 0.165 0185
Option Set
IgEditysdd BingOption
Set Mode Apply Defaults Cancel Help

Page 102 of 133

12. From the appeared Net Selection window, select both VDD and VSS and then click on Add

button. After that click on the OK button.
X Net Selection — O *
Possible Nets Chosen Hets
VDD | VDD
V5SS VS5
T oK] _Cancel Help

13. After that in the Basic tab of Add Rings window, check that the Around core boundary
(under the Core ring(s) contouring option) is selected. Then under the Ring Configuration
section, put all the values on the blank field as same as the below figure. Make sure that
the Layer on the Top and Bottom must be Metal3 H and the Layer on the Left and Right

must be Metal4 V.

M Add Rings

Basic Advanced

Wia Generation

Net(s}:l VDD VSS

Ring Type

& Core ring(s) contouring
= Around core boundany
— Exclude selec objects

v Block ring(s) around

h bloch

ch reef

ap

xcted block ands/or

Selec ower dormaingd

zelected blocks

ared ring edges

vith sh

w Slong VO boundary

es/reefls

COre row's

group of

and/or groups of core rows

w User defined coordinates:

= Core Block r

ring
Ring Configuration

Boftom:
mietald

Top:
Layer: hdetald H »

Right:
hetald v »

Left:

H » hetald W »

2
3
Center in channel

Width: 2
Spacing: 3
Offset:

z
3l

F
3
& Specify

Update

1 1

1

Option Set

Editisdd BinaguEpticn

Set Mode

Drefaults Cancel Help

Apply

Page 103 of 133

14. Now click on the OK button of the Add Rings window. You will see the following encounter

window where the ring encloses the core area.

15. To add stripes to the design, select Add Stripes option by executing Power - Power

Planning - Add Stripe.

F'_Iac-‘: Optimize Clock

Connect Global Nets...

1]
5 Power Analysis

Rail Analysis

Report

Route Timing

Help

rultiple Supply Voltage

g 4 b2 %

add Bing..

m

—

G Cut/Repair.

3 gk

dit Power Yia...

Create Power/Ground Pin...

Page 104 of 133

16. In the appeared Add Stripes window, select the Basic tab and click on the three dots (...)
button for selecting power nets that will be used as stripes in the design.

X Add Stripes

Advanced Via Generation

Set Configuration
Met(s):

Layer; Metalz » Direction: & Vertical - ;orizontal

Width: 0oz Spacing: 0o7
Set Pattemn

2 Set-to-set distance: 100
— Mumber of sets: 1
. Bumps ® Over

o Dwer PAG ping

Between

Fin layer loppindeyernik Az pin width

& Master name: Selected hlocks

Stripe Boundary
& Core ring

— Pad ring
 Design boundary w Create pins
. Each selected block/domainfence
~ All domaing

« Specify rectangular area

— Specify rectilinear area

FirstfLast Stripe
Start from: & et _ right
& Relative from core or selected area
X from left: 0 ¥ from right: 0
— Absolute locations

e COuter

Inner

Option Set

gEditysdd Stripe Gintion

All blocks

Update

Set Mode Apply Defaults Cancel

Help

17. From the appeared Net Selection window, select both VDD and VSS and then click on Add

button. After that click on the OK button.

M Met Selection —

Possible Hets

Chosen Mets

wDD
WaS

oK Cancel

Help

Page 105 of 133

18. After that in the Basic tab of Add Stripes window, select the Metal2 layer and Vertical
direction options. Provide Metal2 stirpes with a Width of 2um and Spacing between
stripes will be Zum. Now under the Set Pattern subsection select the Number of sets
option and put the value 1 on the blank field. Also, in the blank field of X from left option
under the First/Last Stripe subsection put the value 10.

M add Stripes —] >

Baszic Advanced “ia Generation

Set Configuration

Metis): WDOD WSS
Layer: kAetalz » E)irecliun: = “Yerdical Horizontal

Width: z Spacing: 1 | Update

Set Pattermn

— Set-to-set distance:
N = Mumber of sets: 1 | |
_ Bumps

Dver PAG pins »

Stripe Boundary

& Core ring

Fad ring

Design haoundary w

Each selected blockfdomaindence
All domains

Specify rectangular area

Specify rectilinear area

FirstfLast Stripe

Start fram: - |eft right
= Felative from core or selected area
¥ from left: 10| ¥ from right: 0
e R LTUTE TSN
Option Set
m Set Mode apply Defaults . Cancel _ Help

19. Now click on the OK button of the Add Stripes window. You will see the stripes as well as
the ring on the design like the following figure.

Page 106 of 133

Power Planning: SRoute

20. Now to deliver the power supply to the core circuit we need to perform SRoute (special
route). Select the Special Route option by executing Route -» Special Route.

Timing “erify Options FP%Y3> Tools

Flows Help

Generate Routing Guic

Trial Route

Pl o B S Y IET D) @

dano=oule

retal Fill >
wia Fill >

21. In the appeared SRoute windows, select the Basic tab and click on the three dots (...)
button for selecting the power nets name that you created on Import Design browser.

X sRoute
Advanced = Via Generation

Net(s):
SRoute

Routing Control
Layer Change Control
Top Layer: |_Metalg »
o Allow Jogging

Bottom Layer: |_Metall »
o Allow Layer Change

_ Area

o Block Pins o Pad Pins o Pad Rings o Follow Pins o Floating Stripes R}W'r wdary Povier Fins

Power Damain Selection

e & Al
Dy
— « Selected
\ELLAIEE
onnect to Target Inside The Area Only « MNamed
_ Delete Existing Routes
__ Generate Progress Messages
Mode Setup
Target Editing Options
Apply Defaults Cancel Help

22. From the appeared Net Selection window, select both VDD and VSS and then click on Add

button. After that press the OK button.

*x Met Selection

Possible Nets

Cancel

[}

Chosen MNets

WDDr
W3S

Help

Page 107 of 133

23. Now under the Basic tab of the SRoute window, choose Metal2 in Top Layer and Metall
in Bottom Layer. Make sure that Allow Jogging and Allow Layer Change options remain

unchecked.
X SRoute

Advanced Wia Generation
[nets): voD vss 1--1

SRoute

o Block Pins o Pad Pins o Pad Rings o Follow Pins o Floating Stripes Secondary Power Ping

Routing Control
Layer Change Control
ITDp Layer | hMeialz » Eotiom Layer: | hdetall »
I — Allow Jogging Al

_ Area Power Damain Selection
» s Al

— Selected

onnect to Target Inside The Area Only o Named:
__ Delete Existing Routes
__ Generate Progress Messages

Maode Setup

Target Editing Cptions

Apply Defaulls Cancel

Help
Help

24. Now under the Via Generation tab of the SRoute window, choose Top Stack Via: Metal2
and Bottom Stack Via: Metall options. Make sure that your Via Generation tab will look

like the below figure.

X sRoute -
Specify Crossover Connection Layer Range
Top Stack Via Layer | Metalz » Boftom Stack Via Layer | Metall »
Specify Target Connection Layer Range
Top Stack Via Layer | MetalZ » | Bottom Stack Via Layer Metall »
-
__ Check Standard Cell Geometry [k
__ Split vias longer than 0 into smaller vias
with center-to-center step of 0 and bottom/left edge offset of -1
IMake Via Connection to: Target Penetration{%)
« Pad Ring/Pin 100 » Stripe 100
 Core Ring 100 » Block Ring 100
» Block Pin 100 Cover Macro Pin - 100
__ Mo Shape
Use Larger Vias for: Multiplier
_ Block Pin 1.0
__ Follow Pins 1.0
_ Siripes 1.0
Apply Defaults Cancel Help

Page 108 of 133

25. After Completing all the tasks on SRoute window, click on the OK button. The following
figure will appear.

26. This ends our power planning stage. Now save the post your post SRoute design using the
following command.

encounter 2> saveDesign power_plan.enc

Page 109 of 133

Pin Placement

27. After power mesh creation, all the pins of the design need to be placed around the die
boundary. For that, select Pin Editor by executing Edit = Pin Editor.

Eilel-liiew Partition Floorplan

— e LT

lll ===
| ==

IS

0 &%

» Deselect all

rMowveResizes/Reshape Shift+R
Copy

attribute Editor L= |

DE Browser W
SGobo .

EindsrSelect Object... Shift+F

Cirl+ D

Highlight Selected >
Clear Highlight >
Edit Highlight Color. .

Dim Background

Edit Pin Group...
Edit MNet Group...
Edit Pin SGuide___

a)
b)
c)
d)
e)
f)

wWire »
Create Mon Default Rule

28. The steps for assigning pins to the left side are given below,

At first select A[] and B[] pins the from Pin Group.
Next select Spread and Spread type: Along Entire Edge from the Location section.
Then select Side/Edge: Left from Pin Attribute section.
Also select Layer: M3 from Pin Attribute. [select M4 for top and bottom pins]
After that, check the Assign Fixed Status option.
Finally press the Apply button.

M Pin Editor — [} =
Fin Attribute
Partifion:lalu_dbit _ clone Pin Matne sy afi] o] ale] srs] Bio] B8] Ble] BlE] g
» Show Partition Edge MNumber 3 SidesEdge: Left
1 Layer[M1 | M2 M4 | M5 | M6 | M7 | M8 | M9 | PRICRITIZE..
Layer il Il T 75 T Ak = I BRI @ EINEE
LayerH: | 4 A2 eI fs 5 G ¥ £ BRI SRINZE. ..
Crepth: 0.29 Width: 0.07F
Location
i o .
— Update aftribute
Assian location
= Spread
2 Spread Type Along Entire Edge >
= =

Pin Group
ide/Groupslayer:

clk (Unassigned)
Cpcode [] 1
Ay

Fattern Mame FILL _TRACE

Reverse Mlternate
__ Include Rectilinear Edge
__ Global Coordinates

Starting »: 0.0 Y 0.095

Ending *: 0.0 %' 36.3955

Start to end Direction, Clockwise »

Spacing: 0.19

IR

» Group Bus
__ Rewverse Order
Sort By: e Mame . Location

Find Pins:
__ Append Pings) to Pin Mame List

Unit: & kicron Laver Pitch
Snap To
' Manufacturing Grid
. Uszer Grid
& Layer Track
W Sssign Fi<ed Status I 4

w» Fix Overlapping
___ Honor Padition andsor Pin-Lewvel Constraints
» Batch Mode

Use: SIGHAL »

5 Align... Zancel

=]
Help

‘

Page 110 of 133

29. Now following step 28 add the rest of the pins according to Table-a.

Table-a
Pin Name Side/Edge Spread Type Layer
All Left Along entire edge M3
Bl
clk Top From Center M4
[for single pin]
Y[] Right Along entire edge M3
Opcode Bottom Between Points
Starting X—>20 M4
Ending X 225

30. After adding all the pins click on the OK button of the Pin Editor window. Now the design
will look like the below figure on your encounter window.

r
|
-
|
-~
|
|
o
|
|
s
|

}'—'—'r'—'—v—'

31. Now save the design using the following command. This is the end of the pre-placement
stage.

encounter 3> saveDesign pin_placement.enc

Page 111 of 133

Placement
32.To place all the existing instances (standard cells and macros) in the design, use the
following command

encounter 4> placeDesign -noPrePlaceOpt ‘

After placement, click on the black screen of the encounter window and press the F key
on your keyboard. It will clearly show the design with placed instances and the global
routing between.

e
|
|
|
|

-
|
|

g
|
|

i
|
|

i

| |

TTTY T TTUTTY TTTUTUTY O OUTTTYZYITUTTTYTUTUTTTY Y

33. Now save the design to a different database name where all the instances are placed and
connected with each other by global routing by the following command.

encounter 5> saveDesign placement.enc

Page 112 of 133

Post Lab Task

1. Which metal should we use for power and ground rings, stripes, and sroute. why?
Check the difference between global routing and detail routing.

Check the manual of saveDesign, placeDesign using the man command.

What is No-Load violation?

Why can't we do hold optimization before building a clock tree?

AW

Page 113 of 133

Lab-7B: Static Timing Analysis Using Encounter

Digital Implementation System
Objective
The main objectives of this lab are:

e Familiarization with Static Timing Analysis.
e Familiarization with clock tree synthesis, and detail routing.
e Familiarization with STA Optimization Techniques. (Pre-CTS and Post-Route)

Introduction

Static Timing Analysis (STA) is a method of validating the timing performance of an ASIC design
by checking all possible paths for timing violations. STA breaks the design down into timing paths,
calculates the signal propagation delay along each path, and checks for violations of timing
constraints inside the design and at the input/output interface.

Timing paths

Path 1 Path 2 Path 3

emmmmmnd .
-

In the example, each logic cloud represents a combinational logic network.
Each path starts at a data launch point, passes through some combinational
logic, and ends at a data capture point.

Path Startpoint | Endpoint

Path 1 Input port Data input of a sequential element
Path 2 Clock pin of a sequential element Data input of a sequential element
Path 3 Clock pin of a sequential element Output port

Path 4 Input port Qutput port

When performing timing analysis, STA first breaks down the design into timing paths. Each timing
path consists of the following elements:

Page 114 of 133

= Start point: The start of a timing path where data is launched by a clock edge or where
the data must be available at a specific time. Every start point must be either an input
port or a register clock pin.

= Combinational logic network: Elements that have no memory or internal state.
Combinational logic can contain AND, OR, XOR, and inverter elements, but cannot contain
flip-flops, latches, registers, or RAM.

* Endpoint: The end of a timing path where data is captured by a clock edge or where the
data must be available at a specific time. Every endpoint must be either a register data

input pin or an output port.

While performing STA, there are several types of violations that needs to be analyzed and must
solved while debugging the violation paths. We are checking timing violations like setup and hold
violations, and DRV (Design Rule Violations) like maximum transition, capacitance and fanout

violations.

Setup: A setup constraint specifies how much time is necessary for data to be available at the
input of a sequential device before the clock edge that captures the data in the device.

Hold: A hold constraint specifies how much time is necessary for data to be stable at the output
of a sequential device after the clock edge that captures the data in the device.

Setup and hold checks

FF1 AR - - C)-J-[fl [J{l”- FF2
N il Combinational s
D Qf logic — 2 ©
- e
CUK oonin ‘ ________________ B o N ot r
L

Setup and hold

launch edge
CLKFm _____ R

Hold check_

o ~. . Setup check

Hold capture
edge

Setup capture
edge

| | |

10 30

For this example, assume that the flip-flops are defined in the logic library to have a minimum
setup time of 1.0 time units and a minimum hold time of 0.0 time units. The clock period is
defined in the tool to be 10 time units.

Page 115 of 133

By default, the tool assumes that signals are propagated through each data path in one clock
cycle. Therefore, when the tool performs a setup check, it verifies that the data launched from
FF1 reaches FF2 within one clock cycle, and arrives at least 1.0 time unit before the data gets
captured by the next clock edge at FF2. If the data path delay is too long, it is reported as a timing
violation. For this setup check, the tool considers the longest possible delay along the data path
and the shortest possible delay along the clock path between FF1 and FF2.

When the tool performs a hold check, it verifies that the data launched from FF1 reaches FF2
no sooner than the capture clock edge for the previous clock cycle. This check ensures that the
data already existing at the input of FF2 remains stable long enough after the clock edge that
captures data for the previous cycle. For this hold check, the tool considers the shortest possible
delay along the data path and the longest possible delay along the clock path between FF1 and
FF2. A hold violation can occur if the clock path has a long delay.

Max Transition: Transition delay or slew is defined as the time taken by signal to rise from logic
low state to logic high state or fall from logic high state to logic low state. This check ensures that
logic state is changing within a specific time, not taking longer time than that specific time.

Max Capacitance: The capacitance on a node is a combination of the fan-out of the output pin
and capacitance of the net. This check ensures that the device does not drive more capacitance
than the device is characterized for.

Max Fanout: Fanout is the number of CMOS logic inputs that can be driven by one CMOS logic
output. It refers that how many inputs can be safely driven by a single output pin.

Lab Task

So far, we haven’t done any sort of timing analysis or optimization. In this part, we will try to
understand the pre-CTS timing reports and will try to optimize the violations that occurred during
the pre-CTS stage. Then we will create CTS and will route the design. After that, we will analyze
the post rout or post-CTS timing reports and will try to optimize the violations that occurred
during the post-CTS stage.

1. Now from the encounter terminal, restore the placement.enc database using the
following command.

encounter 1> source placement.enc

Page 116 of 133

Pre-CTS Timing Optimization

2. To check the summary of existing setup and DRV violations in the placement stage (also
known as the pre-CTS stage), use the following command

encounter 2> timeDesign -preCTS

A summary of timing violations will appear on the encounter terminal like the below

figure.
ItimeDesign Summaryl

L e e - - - - - - - e +-- - - - - - - - +

| Setup mode | all | reg2reg | default |

L e e - - - - - - - e +-- - - - - - - - +

| WNS (ns):| 8.113 | N/A | 8.113 |

| TNS (ns) :| 0.000 | N/A | 0.000 |

| Violating Paths: | 0] | N/A | 0] |

| A1l Paths:| 6 | N/A | 6 |

L i I I IR +-- - - - - +-- - - - - +----- - - - +

L I I R I i I L +
| | Real | Total |
| DRVs R I I e R R I I I I e S |
| | Nr nets(terms) | Worst Vio | Nr nets(terms) |
e e e e o o o o e e e +
max_cap	0 (0)	0.000	0 (0)
max_tran	Q0 (0)	0.000	Q0 (0)
max_ fanout	0 ()	©	0 ()
max_length	@ (0)	Q	@ (0)
L I I L - - - - - - - L +

3. After checking summary reports from the encounter terminal, we need to check the
detailed reports of existing violations. A directory named timingReports will be created
and detailed violation reports will be generated inside that directory every time when we
use timeDesign command on the encounter. Check your pnr_lab directory whether
timingReports directory and violations reports are created or not like the below table.

timingReports

|— alu_4bit_preCTS_all.tarpt

|— alu_4bit _preCTS.cap

|— alu_4bit_preCTS_default.tarpt
|— alu_4bit _preCTS.fanout

|— alu_4bit _preCTS.length

Page 117 of 133

|— alu_4bit _preCTS.summary
L— alu_4bit_preCTS.tran

0 directories, 8 files

|— alu_4bit_preCTS_reg2reg.tarpt

4. Inthereport of step 2 if there is any negative value in max_tran and max_cap, it indicates
that there is a violation in the design which must be optimized. From the report of step 2,
we can say, there are no violations in the design. If we get any violations on the design,
we have to use the following command for optimization.

encounter 3> optDesign -preCTS

Another optimized summary report will be generated on the encounter terminal where
we can check how many violations still remain after optimization.

L e L L B +
| Setup mode | all | reg2reg | default |

L L L L +

| WNS (ns):| 8.113 | N/A | 8.113 |

| TNS (ns):| ©.000 | N/A | ©.000 |

| Violating Paths: | 0 | N/A | 0 |

| All Paths:| 6 | N/A | 6

L L L L +
LR LR e i i e I I R R R R L R I I I T R R R +
| | Real | Total |
| DRVs I I L L

| | Nr nets(terms) | Worst Vio | Nr nets(terms) |
o m oo oo oo oo oo o - oo +
| max_cap | 0 (0) | 0.000 | 0 (0)

| max_tran | 0 (0) | 0.000 | 0 (0)

| max_ftanout | 0 (0) | 9] | 0 (0)

| max_length | 0 (09) | 0 | 0 (09)

I I I R I R I +

Density: 52.720%

Routing Overflow: 0.00% H and 0.00% V

5. As we run the pre-CTS optimized command on encounter, many changes happened to
the design like changes in the placement of cells and global routing. For that reason, we
need to save the design again using the following command

encounter 4> saveDesign placement_optimized.enc

Page 118 of 133

Clock Tree Synthesis

A clock tree is needed to be built in the design for balancing clock skew and latency after
optimizing the design in the placement stage (pre-CTS stage). It is built using a clock buffer

or inverter cells.

6. At first, we have to mention the clock name and its port name using the following

command

Encounter 5> create_ccopt _clock _tree -name clk -source clk

7. Now enter the following command which will give instructions to the tool to build a clock

tree.

encounter 6> ccopt_design -cts

8. To check the clock tree from the encounter, use the following command

encounter 7> ctd_win

A Clock Tree Debugger window will appear which shows the clock created by the

command used in step 11

M Clock Tree Debugger : max_delay

Miew Wisibility Color by Help

— (] >

cadence

Browser

Analysis YWiew | Skew Group | Skew | Min Delay | MaxDelay |

& max_delay:setup.early
clk
& max_delay:setup late
P clk
B min_delay:hold.early

clk

B min_delay:hald.late
clk

o.0o00

o.ooo

0.000

0.000

o.ooo
o.ooo0
0.000
0.000

o.oon
o.ooon
0.000

0.000

Min Pin
=m3M_reg[SlACk
Sm3Y _reg[OlaCk
Sm3MY_reg[3lACk

smas redlSICK

| MinPath Level |

2
2
2
2

kAaw Pin | MaxFath Level
smESY_reg[0]fCE
st _reg[0)fCE
stds _reg[0]Ck

sm3t redl0liCE

9. After successfully building the clock tree, save the design to a different database name
using the following command.

encounter 8> saveDesign clock_tree_synthesis_optimized.enc

Page 119 of 133

Detail Routing

10. As a pre-CTS optimization is done in the placement stage and after that, we built the clock
tree again in the CTS stage, we need to perform detail routing again. To perform again

detail routing, use the following command again to the encounter terminal.
encounter 9> routeDesign

11. To check whether the detailed routing has been done or not, you can check the wiring
status of the signal routing by selecting a wire and then pressing Q. If the Wire status is
either Routed or fixed, detail routing is done successfully. If all the task has been
performed successfully, your encounter window will be like the following window.

X

File Edit Yiew Partion Floorplan Power Place Optimize Clock Route Timing “erify Options Tools Flows Help cédence

=N~} 1O ERb Y A QARQR0 &Y 14 oENHY (T~
4%?;‘-‘? O % 5H @ 1 By [% ally i Bn | 2:2)|nnlinehelp B

_All Colors v
B Instance W] |y
Instance ¥

]

K|«

X Attribute Editor

Object Type: Regular Wire

| Hame Value

Type

Met Name n_1&
\Wire Direction | 3
Bounding Box (32,265 , 17.54) (32.335 , 2445
Routing Layer | r

Wire Status _RDUIEd D_

Rule _default »

String
Enumerate
Box

Layer
Enumerate

Enumerate

) \(Glase) _Help

) T
Viad(yad) Y
hetald (i) ¥y
Viad(vas) [
Metalaihis) [o
\iaS(y5e

D e : : 1l &)
Met: n_1 SelMum:1 (26144, 19.579) Routed

12. After routing save the design using the following command.

encounter 10> saveDesign routeDesign.enc

Page 120 of 133

Post-Route Timing Optimization
13. To check the summary report of existing setup and DRV violations on the routing stage
(post-route stage), use the following commands.

encounter 11> setAnalysisMode -analysisType onChipVariation

encounter 12> timeDesign -postRoute

[+--------- +--------- +--------- +
| Setup mode | all | reg2reg | default |

S T H - - - - - - - - - H - - - - - - - - - e +

| WNS (ns) : | 7.991 | N/ A | 7.991 |

| TNS (ns) : | ©.000 | N/ A | 0.000 |

| Violating Paths: |] | N/ A | 0] |

| A1l Paths: | 6 | N/ A | 6 |

[+--------- +--------- +--------- +

[R R I e T +
| | Real | Total |
| DRVs T R R T |
| | Nr nets(terms) | Worst Vio | Nr nets(terms) |
o= = = = = = = == = = = = = d = = = = = = = = = = = = = = = = = = 4 - = = - = = - - = - - = = = = = = = = = = = = = = = = = = = +
| max_ cap | 0 () | 0.000 | 0 (0) I

| max_tran | 0 _(9) | 0.000 | Q0 ()

| max__fanout | 0 (0) | (0] | 2 (0)

| max_ lLength | 0 (0) | o] | 0 (0)

R B Tl I I NN L R B e +
density: 52.720s=s

fotal number of glitch wviolations: ©

14.To check the summary report of hold violation from the post-route stage, use the
following command.

encounter 13> timeDesign -postRoute -hold

timeDesign Summary

oo e~ — — = I I +--------- +
| Hold mode I | all | reg2reg | default |
o e e e e e oo e o E U e - B +
WNS (ns):	©.000	N/A	©.000
TNS (ns):] ©.000	N/A	©.000
Violating Paths:	0]	N/A	0]
A1l Paths:	0]	N/A	0]
i I R R +------- - +------- - +--------- +

Density: 52.720%

15. After using the above commands, a summary report will be shown on the encounter
terminal and detailed reports of violations will be generated inside the timingReports

Page 121 of 133

directory. Check the directory whether detail reports are generated or not like the below

figure.

timingReports
|— alu_4bit_postRoute_all.tarpt
|— alu_4bit _postRoute.cap
|— alu_4bit_postRoute_default.tarpt
|— alu_4bit _postRoute.fanout
|-— alu_4bit _postRoute.length
|— alu_4bit_postRoute_reg2reg.tarpt
|— alu_4bit _postRoute.SI_Glitches.rpt
|-— alu_4bit_postRoute.summary
L—alu_4bit _postRoute.tran

0 directories, 9 files

16. To clean the existing setup and DRV violations at the post route stage, use the following

command.

After automatic optimization, updated reports will

encounter 14> optDesign -postRoute

timingReports directory.

be generated inside the

IoptDesign Final ST Timing Summaryl

- mm e oo o o o oo oo - - - - - e R R +
| | Setup mode | | all | reg2reg | default |

-- - - - - - R - - - - - - - - R +

| WNS (ns): | 7.991 | N/ A | 7.991 |

| TNS (ns) : | 0.000 | N/A | 0.000 |

1 Violating Paths: | (0] | N/A | |

| A1l Paths: | 6 | N/A | |

L I e T R R R R R R +

R i R il e R +
1 1 Real 1 Total |
1 DRVs R e T T R R L I R SR |
] | Nr nets(terms) | Worst WVio | Nr nets(terms) |
- - m oo o oo o m - - - - - - e R e +
| max cap | 0 (0) | 0.000 | o (0) |
| max tran | 0 (0) | 0.000 | 0 (0) |
| max Tanout | 0 (0) | 5] | e (0) |
| max_ length | e (@) |] | e (9) |
- - m e e e e e e e e a - - - m e e e e e e e e e m e - - I B T T T U S +
Jdensity: 52.720°%

Total number of glitch wviolations: ©

Page 122 of 133

17. To clean existing hold violations, use the following command.

encounter 15> optDesign -postRoute -hold

IoptDesign Final SI Timing Summary I

B I T I H-mmm - - - Fmm e e - R +
| Setup mode | all | reg2reg | default |

B I T I H-mmm - - - Fmm e e - R +

| WNS (ns):| 7.991 | N/A | 7.991 |

| TNS (ns):| ©.000 | N/A | ©.000 |

| Violating Paths: | Q | N/A |] |

| All Paths: | 6 | N/A | 6 |

B I T I H-mmm - - - Fmm e e - R +

+- - - L Tr T, e Hm e e e — +

| | all | reg2reg | default |
o B B B e +

| WNS (ns):| ©.000 | N/A | N/A |

| TNS (ns):| ©.000 | N/A | N/A |

| Violating Paths: | 9] T N7 A T N7 A |

| All Paths: | ¢} | N/A | N/A |

I Hom e e - - e Hm e e e — +
) o m e - oo e
| | Real | Total

| DRVs R i I R T e I
| | Nr nets(terms) | Worst Vio | Nr nets(terms)
+ecsmamssasm=====2= +=mmmscssssss=ss==== +ecmmamsan=== +=cmmsasssssss===2==
| max_cap | o (9) | 0.000 | o (0)

| max_tran | 0 (0) | 0.000 | 0 (o)

| max_fanout | 0 (0) | a | 0 (0)

| max_length | 0 (0) | Q | 0 (0)
+ecsmamssasm=====2= +=mmmscssssss=ss==== +ecmmamsan=== +=cmmsasssssss===2==

Density: 52.720%
Total number of glitch violations: @

18. After optimization, save the design using the following command.

Post Lab Task

NouhkownN

encounter 16> saveDesign routeDesign_optimized.enc

What are the goals of CTS?

Why are buffers used in the clock tree?
How many routings are done in PnR?
Compare Setup and Hold time.

Find out the advantage of using inverter over buffer while building a clock tree.

What is clock skew and latency? How does skew affect both setup and hold violations?
Check the manual of report_clocks, selectPin, ccopt_design, routeDesign using the man

command.

Page 123 of 133

Lab-8: Physical Verification and Power Analysis
Using Encounter Digital Implementation System

The main objectives of this lab are:

e Familiarization with Physical Verification (DRC, Geometry and Connectivity Check)

e Familiarization with Power Analysis (IR Drops and Electromigration)

Introduction

This section will perform physical verifications to check whether the design layout is equivalent
to its schematic and checks the layout against process manufacturing guidelines provided by the
semiconductor fabrication labs to ensure it can be manufactured correctly. Some common
verification techniques are listed below. This lab will check the DRC, LVS, and ARC under Physical

Verification Steps.

DRC

Physical
Verification

LVS

Fig: Physical Verification flow

Design Rule Check (DRC)

ARC

Design Rules define shapes/size/spacing and many other complex rules of each metal layer. It
starts from the substrate to Newell to the op metal layers. DRC doesn’t ensure that the device

will work properly, it ensures it will get manufactured properly.

Layout versus schematic (LVS)

It checks for correct connectivity between the devices in the circuit. It is a method of verifying
that the layout of the design is functionally equivalent to the schematic of the design.

Page 124 of 133

ARC (Antenna Rule Check)

Checks for a large area of metals that might affect manufacturing. Ensure that the transistors of
the chip are not destroyed during fabrication. Using metal jogging or inserting a diode at the gate
can fix this.

Power Analysis

The power supply (VDD and VSS) in a chip is uniformly distributed through the metal rails and stripes
which is called Power Delivery Network (PDN) or power grid. Each metal layer used in PDN has finite
resistivity. When current flow through the power delivery network, a part of the applied voltage will be
dropped in PDN as per Ohm’s law. The amount of voltage drop will be V = I.R, which is called the IR drop.
We will check in this lab whether special nets are shorted or not, and whether power vias are created
properly, which will connect all the special nets.

Electromigration is the movement of atoms based on the flow of current through a material. If the current
density is high enough, the heat dissipated within the material will repeatedly break atoms from the
structure and move them. This will create both ‘vacancies’ and ‘deposits’. The vacancies can grow and
eventually break circuit connections resulting in open-circuits, while the deposits can grow and eventually
close circuit connections resulting in short-circuit. In this lab, we will check the signal net’s AC current limit
violations.

Lab Task

1. Login to the server in the GUI mode and source the Cadence license file.
[Xlaunch (enable SSH)->putty (load server IP) = login = csh-> source ~/cshrc_g-> nautilus]

2. Open a terminal and make sure you are at the home directory of your account using the
command pwd.

[150205105@aust ~]$ pwd

3. Go tothe directory lab_6/pnr_lab executing the command cd lab_6/pnr_lab

[150205105@aust ~]$ cd lab_6/pnr_lab

4. Make sure that the placement.enc database is present in the pnr_lab directory. Then
launch the Encounter tool from the same directory using the command encounter

[150205105@aust pnr_lab]$ encounter

Page 125 of 133

5. Now from the encounter terminal, restore the routeDesign_optimized.enc database

using the following command.

encounter 1> source routeDesign_optimized.enc

Filler Cell and Metal Filler

Filler cells are used to fill any spaces between regular library cells. They are needed when the
density of the required metal or layer has not met the foundry or fabrication requirement.

6. To add filler cells, execute Place - Physical Cell - Add Filler.

timize

Clock RBoute

Specify

" B E = © |

Tirming e it

Flace Jtag...

Place Standard Cell. ..

=

Flace Spare Cell...

Eefine Placement.. .
EZi Flacement...

Tie HirLo Zell

Scan Chain

Zheck Flacement...

Displaw
Suery Density

sdd wWell Tap.
odd End Cap.

Celete Filler...

» Sdd LA Filler. ..
> Delete 11 Filler...

“heck Filler...

7. Then the Add Filler window will appear. Select all the filler cells from the Cell Lists of the
Select Filler Cells window and give the Prefix FILLER as shown in the following figure. Then

click OK.

X Add Filler - 1D

el Mamefs) 4 FILLT6 FILLS FILLE4 FILLZ FILL1I Jelect I

5 [pretic FiLLer |

Power Damain Gelect
_ MoDRC
_ Mark Fixed
| FillArea | Drawy) (Yiewéiea)
[l Iy
e ury

Apply | Mode | Cancel || Help

y

X SelectFiller Cels

Selectable Cells List

FILL3Z
FILL4
FILLTE
FILLE
FILLE4
FILLZ
FILL1

Cells List

FILL3Z
FILL4
FILL1G
FILLE

| FILLE
FILLT

Page 126 of 133

After adding filler cells, the design will be like the following figure.

;”(Encounter(R) RTL-to-GDSII System 14.2 - fhome/Fall18/150205105/1ab_6/pnr_lab/floorplan.enc.dat - alu_4bit — O e

File Edit Wiew Pattition Floorplan Power Place Optimize Clock Route Timing Verify Options Tools Flows Help cédence
= | O EEts " f40% Q Q QA B QO | &% & 0 ERNRN|IF -
"%}" I]_:] x % @ 1 Eh‘ HL—L‘ » = 'ﬁ% 1]4}‘ %5. | 52) |0n|ine help n

| Layer Control X

th

_All Calors

El Instance
Instance
Block

St Cell
Cover Cell
Physical Cell
10 Cell

Area |0 Cell
Elack Box
Module

E Net

Signal
Special Met
Pawer
Ground

Shield

Metal Fill
Clock

Cell
Blockage
Row
Floomplan
Partition
Bump
Power
Grid
Track
Congestion
Multiple Color
Miscellaneous «
E Wire&Via
Poly(h0)
Cont{%01)
retall (k1)
Wial{(¥12)
Metalz{tz)
WiaZ{Wzd)
Metald{ha)
_____________________ Yiad(vad)
Metald a4y
Wiad{v4a)
MetalS{re)
Wiad{wah)

e e e] e

O

O

e T T] K] <
L4
111

LU CYY L

C

r
|
-
|
"
|
|
-
|
|
.
|
-
i
L
|
i

g

T T

I o o o o o o o

[a[[seinumn 43602, -6.555) [Tiring P.nallyzn‘ad_

8. After adding filler cells, we have to re-route the modified design using the following
command.

encounter 2> ecoRoute

Page 127 of 133

9. Now to add metal filler use the following command.

encounter 3> addMetalFill

After adding metal filler, the design will be like the following figure.

al

|
..J

|

A
o

I

|
-

|

|
-l

r v .

10. Now, to check the placement density and number of placed cells use the following
command.

encounter 4> checkPlace

Page 128 of 133

Physical Verification

11. After routing, the design must pass all physical verification stages. At first, we will check
all DRC (Design Rule Check) rules using encounter. Write the following command on the
encounter terminal.

encounter 5> verify _drc

If the design has a DRC violation, you can see the DRC markers (white cross) from the
encounter window. To check all the DRC violations, click on the Violation Browser icon
marked on below the figure.

5‘»‘(Encounter(R) RTL-to-GDSI Systemn 14.2 - fhome/Fall18/130205105/1ab_6/pnr_lab/floorplan.enc.dat - alu_dbit — O hs

File Edit Wiew Parition Floorplan Power Place Optimize Clock Boute Timing Yerify Options Tools Flows Help (édence
= d | O (RN P X440 Q Q & B | © &%
(M) © % M @ 1 8 [% = & i 5

| Layer Control

X

Al Colors
E Instance
Instance
Elock

Std. Cell
Cowver Cell
FPhysical Cell
10 Cell

Area O Cell
Elack Box
Module

El Het

Signal

Special Met
FPower
Ground

Shield

retal Fill
Clock

Cell
Blockage
Row
Floorplan
Partition
Bump
Power
Grid

Track
Congestion
Multiple Color
Miscellaneous
= Wire&\Via
Paly (k0]
Cont(v01)
retall (M1
Wial(W12)
Metal2(ME)
Yia2(¥23)
retal3(M3)
Wiad (w34
retald (b
Wiad (W45 E]
retalS(MS) []
YWiaS(WsE)

L1 | o o
Click to select single ohject. Shift+Click to dedselect multiple objects. Q l SelMum:D |-2.433, 13.027) |R0uted

L A

O

O

JARKK KKK KRR RRRRRD | KRR KRR R =
KK

|

_!_____L____J_____!____{

KKK

.

C

v

R R R

Page 129 of 133

12. The following Violation Browser window will appear. In that window, all the DRC type and
their detail violation can be checked. Click on any of the violation it will take you to that
violation area.

X Viclation Browser — O Pt
Load Yiolation Report | Clear Violation Fage: | - Z 3 4 5
Violation Type: Violation:

Oth 2iz2E LAYER | OBJECT | OBJECTE |CATH
=- Cannectivity (22/22) b1 3. i
L OpEN (22/22)
B Verify (G4/84) k1 id..
= Shﬂg hI:E r?f(aﬁi)fﬁdj M ©-
M1 (3. |2
M1 (3.
M1 (3.
M1 (3.
M1 (3.
M1 (3.
M1 (3.
M1 (3.
M1 ...
M1 . —

Description:

Other: no. = 22, hbox = (10,005, 10.075) (35.995, E7.163)

» Auto Zoom; Level{um)

_ active Layers 3] () . # P X O N

= &
Find Save Report
Find:
_ Case Insensitive Drc File: alu_4dhitviols.drc Save Load
__ Flace in Category Repart File: alu_dhitviols.mpt Save
N —

Close Help
e —" o

13. To solve power net (VDD) and ground net (VSS) related violations, use the following
commands on the encounter terminal.

encounter 6> globalNetConnect VDD

encounter 7> globalNetConnect VSS

-pin VDD -instanceBasename * -verbose

-pin VSS -instanceBasename * -verbose

Page 130 of 133

14. Now to solve violations that occurred due to the shape of via, zoom into the violation area
and change the via type by clicking the “Shift+N” key.

15. Now clear all DRC markers from the encounter and Violation Browser window and again
check the DRC, using the following commands.

encounter 8> clearDrc

encounter 9> verify drc

16. To check all violations related to the connectivity of the design, use the following
command.

encounter 10> verify_connectivity

17. To check geometry violations from the encounter, write the following command on the
encounter terminal.

encounter 11> verifyGeometry

18. To check ARC (Antenna Rule Check) using encounter, write the following command on
the encounter terminal.

encounter 12> verifyProcessAntenna

Power Analysis

19. To check whether the Power/Ground net is short or not use the following command on
the encounter terminal. The command checks short between
a. PG and PG nets
b. PG and signal nets
c. PG and other special net

encounter 13> verify PG _short

20. To check all the single power via are generated correctly to connect each of the PG net
together.

encounter 14> verify_power_via

Page 131 of 133

21. The following command will check only the generated stacked power via on the design
and reports unconnected or weakly connected special nets.

encounter 15> verify_power _via -stacked via

22.To prevent wire from self-heating or AC signal electromigration, signal interconnects
should be analyzed for their AC current carrying capacity and measured against the AC
current limits specified by the foundry. Use the following command to check AC current
violations on signal nets

encounter 16> verifyACLimit

23. Now if you optimized all the violations save the final design using the following command
on the encounter terminal.

Post Lab Task
1.

uRhwN

encounter 17> saveDesign finalDesign.enc

Discuss the importance of filler cell and metal filler?
How the ARC problem can be solved?

What is IR drop? Define is Static and Dynamic power dissipation?

How LVS comparison is dine in digital design?

Check the manual of verify_drc, verify_connectivity, verifyGeometry,

verifyProcessAntenna, verify_PG_short, verify_power_via, verifyACLimit using the man

command.

Page 132 of 133

References and Acknowledgment

The following resources have been consulted while preparing the manual.

Stephen Brown and Zvonko Vranesic , “Fundamentals of Digital Logic with Verilog
Design”.

Erik Brunvand , “Digital VLSI Chip Design with Cadence and Synopsys CAD tools”

M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital, Memory,
and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, , ISBN: 0-7923-7991-8.

A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, “VLSI Physical Design: From Graph Partitioning
to Timing Closure. Springer Publishers”, ISBN 978-90-481-9590-9.

https://linuxhint.com/

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1RsOF3NMyxNs-
7y4FacKjfbu5M08XzhOTps eZaTvqueUS4DMNgRzenhw

Prepared by:

Adnan Amin Siddiquee

Lecturer,

Department of EEE,

Ahsanullah University of Science and Technology,
Dhaka, Bangladesh

Partha Sanjoy Dev
Engineer,
Ulkasemi Limited, Dhaka, Bangladesh

Special Thanks to:

Dr. Satyendra Nath Biswas

Professor,

Department of EEE,

Ahsanullah University of Science and Technology,
Dhaka, Bangladesh

Mahmudul Hasan Shuvo
Assistant Engineer (former),
Ulkasemi Limited, Dhaka, Bangladesh

Page 133 of 133

https://linuxhint.com/
https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1Rs0F3NMyxNs-7y4FacKjfbu5M08XzhOTps_eZaTvqueUS4DMNgRzenhw
https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1Rs0F3NMyxNs-7y4FacKjfbu5M08XzhOTps_eZaTvqueUS4DMNgRzenhw

